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Engineering random spin models with atoms 
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All-to-all interacting, disordered quantum many-body models have 
a wide range of applications across disciplines, from spin glasses in 
condensed-matter physics over holographic duality in high-energy physics 
to annealing algorithms in quantum computing. Typically, these models are 
abstractions that do not find unambiguous physical realizations in nature. 
Here we realize an all-to-all interacting, disordered spin system by subjecting 
an atomic cloud in a cavity to a controllable light shift. Adjusting the 
detuning between atom resonance and cavity mode, we can tune between 
disordered versions of a central-mode model and a Lipkin–Meshkov–Glick 
model. By spectroscopically probing the low-energy excitations of the 
system, we explore the competition of interactions with disorder across a 
broad parameter range. We show how disorder in the central-mode model 
breaks the strong collective coupling, making the dark-state manifold 
cross over to a random distribution of weakly mixed light–matter, ‘grey’, 
states. In the Lipkin–Meshkov–Glick model, the ferromagnetic finite-sized 
ground state evolves towards a paramagnet as disorder is increased. In that 
regime, semi-localized eigenstates emerge, as we observe by extracting 
bounds on the participation ratio. These results present substantial steps 
towards freely programmable cavity-mediated interactions for the design of 
arbitrary spin Hamiltonians.

The unavoidable presence of impurities and inhomogeneities in 
most real-world physical systems has given a strong motivation to 
the study of disordered models. In such studies, important insights 
into the typical behaviour of a many-body system can be obtained by 
considering an ensemble of realizations with randomly distributed 
parameters1. In this way, a deeper understanding of the structure of 
low-energy excitations in complex quantum systems can be achieved, 
providing keys to interpreting transport and thermodynamics obser-
vations. Going one step further, several quantum simulation plat-
forms, such as trapped ions2, ultracold atoms3 and Rydberg atoms4–6,  

have demonstrated the capability to implement controlled disorder 
into otherwise clean many-body systems. Those allowed for the inves-
tigation of non-equilibrium dynamics, revealing some of the most 
intriguing phenomena of random systems, such as Anderson7–11 and 
many-body localization12–14.

In the last years, cavity quantum electrodynamics (QED)  
has emerged as a new platform for quantum simulation. By har-
nessing photons to tailor novel types of interaction beyond the 
native van der Waals and dipolar interactions between atoms, cavity 
QED unites the scalability of atom devices with tunable long-range 
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Model
Our system implements a paradigmatic model consisting of N Ising 
spins, mapped to internal atomic states, identically coupled to the 
central, bosonic photon mode of the cavity. By exposing the ith spin 
to a random energy shift ϵi, the model is described by the disordered 
Tavis–Cummings-type Hamiltonian as

̂HTC = ∆ca ̂a† ̂a + g√N ( ̂S
+ ̂a + ̂S

− ̂a†) +
N
∑
i=1
ϵi
σ̂zi
2 . (1)

Here ̂a† and ̂a are the creation and annihilation operators of the photons 
in the cavity, σ̂ri  are the r-Pauli operators acting on the Ising (pseudo-)

spin-1/2 of the ith atom, ̂S
+(−)

= ∑N
i=1 σ̂

+(−)
i /√N  are the collective 

spin-raising (lowering) operators and ∆ca is the detuning between the 
cavity and bare atomic resonance. We set ℏ = 1 throughout the manu-
script. Central-mode models31,32 have been used to describe a large vari-
ety of physical situations, including qubit decoherence in solid-state 
quantum computing platforms as well as heat and charge transport 
in nanostructures.

In the disorder-free instance of the Hamiltonian of equation (1) 
(Fig. 1a, left), the spin-1/2 degrees of freedom form a manifold of N + 1 
collective exchange-symmetric Dicke states coupled to light, thus 
called ‘bright states’, which are described by a single collective spin ̂S. 
The remaining 2N − (N + 1) states form a dark manifold that is decoupled 
from the cavity field. In the single-excitation manifold, this structure 
reduces to two polaritons and N − 1 dark states. A controlled breaking 
of this collective spin description into macroscopic subsets that are 
spatially and spectrally distinguishable has recently been demon-
strated by splitting atomic ensembles with the help of optical tweezers 
and magnetic-field gradients23.

In the model of equation (1), the collective spin description is 
broken by disorder (Fig. 1a, right). This leads to the fragmentation of 
the dark-state manifold into an ensemble of ‘grey eigenstates’ that are 
hybridizations of the delocalized photon field as well as a few local-
ized spins with similar energies27. Because the coupling to the cavity 
extends over the entire system, energy resonances between spins 
can occur at arbitrarily large distances in the presence of disorder. 
As a result, the grey eigenstates have wavefunctions that are neither 
localized nor delocalized but semi-localized over multiple, arbitrarily 
distant spins33,34. It was recently demonstrated theoretically that for 
any strength of light–matter coupling, this results in a multifractal 
structure of the eigenstates, similar to that found at the critical points 
of localization–delocalization transitions35. Even though they have 
never been directly observed, it is believed that disorder-induced 
grey states are responsible for the spectacular enhancement in energy 
and charge transport found in disordered molecular systems coupled  
to cavities27,28,36–40.

Experimentally, the Hamiltonian in equation (1) is realized by an 
array of N = 90–800 thermal 6Li atoms confined in about 160 trapping 
sites, positioned at the anti-nodes of the resonant cavity field. The spins 
are encoded in the 2SF=1/21/2  (|g〉) and 2P3/2 (|e〉) states of 6Li atoms  
(Fig. 1b,c). The cavity resonance is tuned close to the 2S1/2–2P3/2 transi-
tion at 671 nm, with the detuning given by ∆ca. Our cavity is close to 
concentric, leading to a single-atom cooperativity of η = (4g2)/(κΓ) = 6.4, 
where g/2π, κ/2π and Γ/2π are 2.05, 0.45 and 5.80 MHz. Due to the 
cloud’s temperature of 200 μK, and the reduced dipole moment for 
linearly polarized light at zero magnetic field, the average cavity cou-
pling that the atoms experience is ̄g/2π  = 1.23 MHz (Methods and 
Extended Data Fig. 1a–c,e).

The disorder is created by two laser beams that intersect at  
the position of the atoms, with frequency slightly detuned from the 
2P3/2–4D5/2 transition at 460 nm (Extended Data Fig. 1d,f), forming a 
light-shifting lattice with a period of 1.04 μm that is incommensurate 
with the trapping lattice, which has a period of 671 nm. This produces 

interactions15. Previous experiments used this platform to explore 
new, superradiant16–19 and dissipation-stabilized20,21 phases of  
matter in quantum gases, as well as to demonstrate tunable- 
range interactions22 and emergent geometries using spatial and 
spectral addressing23.

In this article, we implement random spin models on a cavity 
QED platform and study their low-lying excitations. Via a light-shift 
technique, we realize a quasi-random longitudinal field with con-
trolled strength, which competes with an all-to-all flip–flop interaction 
mediated by the exchange of cavity photons. Leveraging the open 
nature of the cavity, we observe the frequency-resolved response 
in the cavity field and atomic polarization channels. We exploit our 
setup to observe disorder-driven crossovers in two different regimes: 
a central-mode model where we observe a disorder-induced dressing 
of otherwise dark antisymmetric states with cavity photons, and a 
Lipkin–Meshkov–Glick (LMG) model (an instance of a Richardson–
Gaudin model) where disorder competes with ferromagnetic order. 
As shown theoretically and experimentally, the frequency-resolved 
susceptibilities are sensitive to the detailed structure of excitations, 
providing particular insights into their localization properties. Our 
system is a natural starting point to investigate the spectacular conse-
quences of strong light–matter coupling on materials properties24–26 
such as transport27–29 or magnetism30, where the effect of disorder due 
to impurities and material inhomogeneities is believed to be strongly 
influenced by light.
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Fig. 1 | Concept of the experiment. a, Fragmentation of collective light–
matter eigenstates with increasing disorder. Disorder-free system with all the 
spins (spheres) identically coupled to the central mode ̂a provided by the 
cavity field, forming a symmetric collective Dicke state (left). With disorder, 
the collective state fragments into few- or single-spin ensembles whose 
constituents are located at arbitrarily large distances, exchanging excitations 
through the cavity, sketched here for three excitation modes (right).  
b Experimental realization: atoms are trapped in an optical resonator, forming 
an atom array commensurate with the cavity mode, ensuring identical 
atom–light coupling. Two crossed light-shifting beams (blue) illuminate the 
atoms with an incommensurate standing-wave inference pattern, leading to a 
quasi-random intensity distribution ρa over the atoms (right). The inset below 
illustrates the positions of the atoms (black bars) with respect to the 
cavity-field intensity (red wave), the optical dipole trapping potential (grey 
wave) and the intensity of the light-shifting lattice (blue wave). c, Simplified 
level diagram of the 6Li atoms. The light-shifting laser (blue arrow) off-
resonantly couples the 2P3/2 manifold with the higher-lying 4D5/2 manifold, 
yielding a dressed state |e〉 (blue), with an energy shift proportional to the  
laser intensity.

http://www.nature.com/naturephysics


Nature Physics | Volume 19 | August 2023 | 1128–1134 1130

Article https://doi.org/10.1038/s41567-023-02033-3

a quasi-random pattern of strong light shifts in the 2P3/2 state, with 
negligible effect on atoms in the ground state (Fig. 1b,c). These light 
shifts result in quasi-disordered energy shifts ϵi, which translate into 
the spin language as random local longitudinal fields sampled from 

the distribution ρa(ϵ) = [π√ϵ(W − ϵ)]
−1

, where W is proportional to the 

intensity of the control laser (Methods). We neglect the light shifts 
induced by the trapping light on the ground and excited states, as it 
is small compared with the light shift induced by the 460 nm beam.

We probe the system by weakly driving the cavity on axis with a 
probe beam and measuring both photon transmission proportional 
to ⟨ ̂a† ̂a⟩ and atomic excitations ⟨ ̂S

z
⟩ = ⟨∑N

i=1 σ̂
z
i ⟩/(2N) using an optical 

pumping technique (Fig. 2a). In the linear-response regime, this pro-
vides us with the frequency-dependent photonic and atomic (spin) 
susceptibilities, namely, χp and χa, respectively (equations (5), (7) and 
(15) provide the definitions and Extended Data Fig. 2 provides  
the details).

Near-resonant regime and grey states
We first investigate the regime at small ∆c ̄a where the cavity resonance 
is close to the mean atomic resonances, that is, ∆c ̄a = ∆ca −W/2   
(Fig. 2b). In the absence of disorder, we observe the canonical 
normal-mode splitting of a width 2g√N/2π  of 22 MHz expected from 
the Tavis–Cummings model (Fig. 2c). As a result of this splitting, a Rabi 
gap forms at ∆c ̄a = 0, and direct atomic excitations at the bare reso-
nance frequency are suppressed (Fig. 2c, centre). Although there are 
N − 1 eigenstates of the Hamiltonian lying within the gap, these are 
purely atomic, and the symmetry of the all-to-all atom–cavity coupling 
prevents their excitation, rendering them completely dark.

On introducing disorder, we observe the onset of a non-zero 
response around zero detuning, a manifestation of the increase in photon 

weight of the originally dark purely atomic states. A representative 
spectrum of χa for W/(2π) = 26 MHz is presented in Fig. 2d. We observe 
that the fading out of Rabi splitting occurs via a redistribution of the 
spectral weight from the polaritons to a wide spectrum of midgap states. 
For |∆c ̄a| ≳ W, a narrow, dispersively shifted cavity resonance is restored 
at around ∆pc = 0 (Fig. 2d).

To further understand the evolution of the spectrum with disorder 
strength, we probe the photonic susceptibility at ∆c ̄a = 0 as a function 
of disorder strength W and detuning ∆pc. The results are presented in 
Fig. 2g,i for different mean atom numbers N. For weak disorder, pho-
tonic susceptibility χp confirms the presence of two bright polaritons, 
and a manifold of degenerate dark states at the centre of the Rabi gap. 
As the disorder becomes comparable with the collective atom–cavity 
coupling, that is, W ≈ g√N , we observe a smooth increase in χp at 
around ∆pc = 0, signalling the onset of a finite coupling of a grey-state 
manifold emerging from the originally dark states. Simultaneously, 
the polaritons’ response weakens and fades away for the largest disor-
der, where the spectrum consists of a resonance centred at ∆pc = 0 
strongly broadened by the disorder.

The evolution of the spectrum with disorder is driven by the 
fragmentation of the eigenstates, from fully delocalized bright and 
dark states without disorder, to randomly distributed, isolated reso-
nances for the largest disorder. To confirm this interpretation, we 
compare our observation (Fig. 2g,i) with theoretical calculations 
(Fig. 2h,j) of the cavity transmission based on Green function tech-
niques (see the ‘Susceptibility in the near-resonant regime’ section). 
The model takes into account the experimental distribution of spin 
energies, which is correlated and non-uniform, different from the 
case studied elsewhere35.

Nevertheless, we have verified that the eigenfunctions are multi-
fractal in the same way (Supplementary Section 1.1). The simulations 
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Fig. 2 | Response of the system in the central-mode regime. a, Measurement of 
atomic and photonic susceptibilities on a drive of the cavity. Photonic 
susceptibility χp is given by a cavity transmission measurement, whereas atomic 
susceptibility χa is proportional to the number of atoms that have been excited by 
the cavity field (Methods). b, Frequency diagram illustrating the relative 
detunings between the atoms with average frequency ωa  in range W, the cavity at 
frequency ωc and probe at ωp. The light-blue dashed lines indicate the edges of 
the atomic frequency distribution. In all the other panels, the atomic states lie 
between the two light-blue lines. c–f, Measured (c and d) and simulated (e and f) 
(see the ‘Susceptibility in the near-resonant regime’ section, where 
N = 100 atoms) atomic susceptibility maps as a function of atom–cavity and 
pump–cavity detunings (x and y axis, respectively), for the clean system (c and e) 
and at maximal disorder W/2π = 26 MHz (d and f). g–j, Measured (g and i) and 
simulated (h and j) photonic susceptibility as a function of disorder strength W 

for different atom numbers: N = 74 (g and h) and N = 145 (i and j). k, Vertical 
sections of g and h overlapped (curves are vertically offset for clarity) for 
W/g√N = 0, 1, 2. l, Photon weight (PW) of the grey states (empty markers, dashed 
lines) and polaritons (filled markers, continuous lines) as a function of 
normalized disorder strength for N = 145 (circles) and N = 74 (triangles) atoms, 
indicating the disappearance of polaritons and appearance of grey states. The 
grey states’ photon weight was measured by taking the average photonic 
susceptibility over the grey-state region defined by ∆pc ∈ { −Γ/2, Γ/2}, whereas the 
photon weight of the polariton was quantified by taking the height of the lower 
polariton in g and i, which is not affected by the radiation pressure of the 
light-shifting beam (Methods). In k, data are presented as mean values ± standard 
error of the mean (s.e.m.). Averages run over 106 measurements. In l, data are 
presented as mean values ± s.e.m. Averages run over 106 measurements for 
N = 145 (circles) and 113 measurements for N = 74 (triangles).
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(which take into account the measured atom number fluctuation), the 
effects of thermal motion on atom–cavity couplings and both losses 
of photons and atomic decay, are in good agreement with the observa-
tions for the low-disorder regime. For the strongest disorder, deviations 
particularly appear for the upper polariton, whose signal appears 
moderately weaker in the experiment. We attribute this to losses 
induced by radiation pressure from the control laser at 460 nm, pre-
dominantly affecting the excited atoms with the largest admixture in 
the 4D5/2 manifold (Methods). For the largest disorder strength, we do 
not resolve the polaritons themselves but observe a clear signal from 
the grey states. These results are further confirmed in Fig. 2k, which 
presents a direct comparison of the experimental and theoretical data 
for photonic susceptibility χp as a function of ∆pc for representative 
values of disorder strength W. The same simulation procedure  
also reproduces atomic susceptibility χa measured as a function of 
detunings (Fig. 2e,f).

We quantitatively analyse the fading out of the polariton and the 
emergence of grey states by comparing the photonic susceptibility 
in the lower (respectively middle) parts of the spectrum (Fig. 2g–j). 
This yields the overall photon weight of the polariton and grey states 
as a function of normalized disorder strength (Fig. 2l). The crosso-
ver between the light–matter-interaction-dominated regime and 
disorder-dominated regime is evident as spectral weight is smoothly 
transferred from the polariton to grey states, in qualitative agreement 
with the simulations.

Large-detuning regime and LMG model
In the central-mode model investigated so far, an essential role is played 
by the finite admixture of spin excitations to the delocalized photon 
field. For large detuning ∆ca ≫ g√N , the cavity field is only virtually 
populated, giving rise to an all-to-all interaction between the spins, 
thereby realizing an effective LMG model41–43 (Fig. 3a and the ‘Effective 
model and atomic susceptibility in the large-detuning regime’ section). 

In the presence of a longitudinal random field, the Hamiltonian for 
these effective dynamics reads

̂HLMG =
N
∑
i=1
ϵi
σ̂zi
2 − JN ̂S

+ ̂S
−
, (2)

where J = g2/∆ca is the strength of the spin-exchange interactions.  
Equation (2) is a particular case of the class of exactly solvable  
Richardson–Gaudin models44,45 that are ubiquitous in quantum 
many-body systems32.

Similar to the central-mode model, in the absence of disorder 
(W = 0), equation (2) describes the dynamics of a collective spin within 
the Hilbert subspace of symmetric states. The nonlinearity inher-
ited from the spin–cavity coupling favours a ferromagnetic ground 
state, protected by a finite gap of size JN. A striking manifestation 
of ferromagnetism is the strong suppression of the zero-frequency 
magnetic response.

To realize the model of equation (2), we detune the cavity to the 
blue of the atomic transition by ∆ca/2π = 92 MHz, and probe the system 
at frequency ωp in the vicinity of the bare atomic resonance ωa (Fig. 3a). 
In this regime, the transmission of the cavity is negligible such that 
χp ≈ 0, and the atomic signal χa(∆pa) (equation (15) provides the defini-
tion) directly measures the transverse spin susceptibility of the system 
at frequency ∆pa = ωp − (ωa + 2g2/∆ca) (equation (12)). As shown in  
Fig. 3b,c, in the absence of disorder, the frequency dependence of χa 
reveals the finite ferromagnetic gap, with magnitude ∆FM, as well as 
the reduced zero-frequency susceptibility at ∆pa = 0.

The signal is broadened by the finite decay rate of the excited 
atomic states, which reduces to a convolution of the response with 
the linewidth of the atomic transition (Supplementary Section 1.2).

We now investigate this model in the presence of disorder. Similar 
to the central-mode model, this breaks the description in terms of a 
collective spin, restoring the system’s ability to explore the full Hilbert 
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regime’ section). For f, data are presented as mean values ± s.e.m. Averages run 
over 290 measurements. For g, data are presented as mean values ± s.e.m. They 
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The fitted data are averaged over 19 measurements. For h, data are obtained from 
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space. For a given disorder strength W, the susceptibility (Fig. 3f) shows 
an asymmetric peak, corresponding to a collectively enhanced 
response superimposed with a weak and broad background whose 
width traces the disorder strength (Fig. 3b–e, dashed blue line). This 
is a manifestation of the gradual fragmentation of the collective spin, 
as disorder renders the individual spins off-resonant with each other. 
The peak is located at −∆FM, and we denote its amplitude by χFMa .

Tracking the location of this peak provides a measurement of  
the ferromagnetic gap as a function of W. Without disorder, this  
gap increases linearly with atom number (Fig. 3g). With increasing 
disorder, it decreases smoothly towards zero (Fig. 3h), where for low 
enough atom numbers, the gap is zero within our error bars. This 
demonstrates the competition between the infinite-range 
cavity-mediated interaction J and spectral disorder W for the dynamics 
of the effective model ̂HLMG.

Our results are in very good agreement with a simulation of the 
response χa of ̂HLMG (see the ‘Numeric simulation of the large-detuning 
regime’ section), over the entire parameter regime (Fig. 3b–f): the 
simulated system sizes were set as the mean atom numbers N realized 
across all the experimental runs, and the effect of the atoms’ thermal 
motion on the atom–cavity coupling g has been taken into account,  
as in the near-resonant case. The decrease in the ferromagnetic gap 
(Fig. 3h) indicates a drastic change in the system properties as disorder 
increases. However, in the thermodynamic limit, the system is always 
ferromagnetic and no paramagnetic phase transition should occur. 
Indeed, intuitively, for any fixed disorder strength, increasing the 
number of atoms will always lead to an infinite number of 
close-to-resonance spins, enforcing ferromagnetism in the thermo-
dynamic limit for an arbitrarily large disorder strength. However, for 
any finite number of atoms, there exists a disorder strength large 
enough to bring the ferromagnetic gap close to zero, by rendering each 
spin essentially spectrally isolated from all the others, thus crossing 
the system over into a paramagnet.

More precisely, our simulations show that finite systems display a 
minimal gap at disorder strength W* suggestive of critical behaviour; 
however, the value of W* diverges with increasing atom number (Sup-
plementary Section 1.3 and Supplementary Fig. 2).

Localization of excitations
The existence and distribution of energy resonances in disordered 
systems is the essence of Anderson localization. In our system, exci-
tations can hop at arbitrarily large distances provided the spins are 
closely resonant. Disorder, thus, decimates the spins available for reso-
nance by offsetting most spins from each other, but does not prevent 
long-distance propagation33,35.

Interestingly, although our spectroscopic probe does not yield 
spatially resolved information, it does carry relevant insights about 
the localization of excitations. Indeed, general arguments based on the 
hierarchy of Rényi entropies (see the ‘Participation ratio and its relation 
to susceptibility’ section) show that a system’s magnetic response may 
be used to bound the participation ratio of the excitations, that is, the 
number of spins contributing to the wavefunction. The participation 
ratio PR1 of the first excited state obeys

χa,1 ≥ PR1 (3)

at any W ≥ 0, where χa,1 is the contribution of the first excited state to 
the atomic susceptibility when the system is probed on resonance 
with the transition to this state, from the global ground state (the ‘Par-
ticipation ratio and its relation to susceptibility’ section provides the 
proof). The bound is reached for W = 0, where PR1 = N corresponds to 
a wavefunction uniformly distributed over all the spins, as well as in 
the limit W → ∞ in which the excitation becomes localized on a single 
spin (PR1 → 1). Our frequency-resolved measurement, thus, allows us 
to verify the fragmentation of the system’s collective excitations into 

ever-more localized wavefunctions, consistent with the expectations 
for eigenstates of the central-mode model33,35,46.

Figure 4 shows the participation-ratio bound deduced from our 
measurements, showing a decrease by more than a factor of two as 
disorder reaches the largest values. On normalization of PR1 by the 
mean atom number N as well as W by the corresponding zero-disorder 
ferromagnetic gap JN, all the data collapse onto each other and agree 
with the simulations. The figure also shows the theoretically predicted 
value of PR1, which obeys the bound observed in the data.

Similar to the ferromagnetic gap, suggestive as these findings are, 
they do not herald a transition from delocalized to localized. For a fixed 
disorder strength, increasing the number of atoms leads to an infinite 
number of close-to-resonance spins at arbitrary distances, preventing 
full localization but leading to a semi-localized regime similar to the 
critical regime of the Anderson transition33.

Conclusion
Our ability to introduce controlled disorder in cavity QED offers many 
timely and exciting prospects for further investigations, such as the 
study of Bardeen–Cooper–Schrieffer superconductivity47,48, where 
our atomic susceptibility measurements would directly map to the 
pairing gap. More broadly, equation (2) allows the direct simulation of 
Richardson–Gaudin models that are relevant to a variety of many-body 
systems, from superconductivity in ultrasmall grains to quark physics 
and neutron stars. Furthermore, the capabilities demonstrated in our 
experiment could also be used to study the effect of inhomogeneous 
broadening for quantum optics applications, particularly for superradi-
ant laser clocks49. The combination of disorder with cavity-mediated 
interactions could further be used to study glassy phases of matter50,51.

Although the finite lifetime of the employed excited state limits 
the current investigations to one excitation above the fully polarized 
state, higher excitations can be probed by encoding the spins in the 
ground-state manifold and coupling them via Raman transitions52 or 
through the use of atoms with long-lived excited states43. Last, using 
high-resolution optics and time-resolved manipulation of the control 
light, it will become possible to program the otherwise homogeneous 
long-range cavity-mediated interaction in space and time, lifting one 
of the most stringent restrictions for the use of cavities in quantum 
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Fig. 4 | Participation-ratio bound from atomic susceptibility. Normalized 
atomic susceptibility χFMa , an upper bound to the participation ratio PR1 of the first 
excited state, for N = 303 (empty red circles) and N = 610 (blue triangles) as a 
function of normalized disorder strength. The solid black line shows the 
corresponding simulation results for χa,1 of equation (3). The black dotted line is the 
directly simulated participation ratio of PR1. The inset shows the maximum value of 
the zero-disorder atomic susceptibility as a function of atom number, showing 
linear scaling expected from the definition of χa (equation (15)). Data are obtained 
from a fit of the polariton’s response ± standard deviation, with different atom 
numbers. The fitted data are averaged over 290 measurements for N = 303 (empty 
red circles) and over 269 measurements for N = 610 (blue triangles). For the inset, 
data are obtained from a fit of the polariton’s response ± standard deviation, with 
different atom numbers. The fitted data are averaged over 19 measurements.

http://www.nature.com/naturephysics


Nature Physics | Volume 19 | August 2023 | 1128–1134 1133

Article https://doi.org/10.1038/s41567-023-02033-3

simulation applications. In combination with small ultracold samples 
of our fermionic 6Li atoms, this will allow for the creation of random 
long-range interactions between fermionic degrees of freedom, one 
of the building blocks for holographic quantum matter53.
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Methods
Experimental apparatus
The core of our setup is a high-finesse optical resonator placed inside 
an ultrahigh vacuum chamber54. The cavity has a finesse of 59 × 103 and 
13 × 103 at 1,342 and 671 nm, respectively. The cavity is 25.9 mm long, 
103 μm shorter than concentric, yielding a single-atom single-photon 
cooperativity of η = 6.4. The 1,342 nm light is used for frequency stabi-
lization and dipole trapping and the 671 nm light allows for resonant 
coupling to the D2 transition of lithium.

We use in total two lasers, a 1,342 nm diode laser (main laser) that 
is Raman fibre amplified and then frequency doubled to generate light 
at 671 nm, and a laser diode emitting at 460 nm (light-shifting laser). 
The main laser is used for the magneto-optical trap, absorption imag-
ing, cavity probing and trapping of the atoms in a cavity-enhanced 
optical dipole trap. It is stabilized to our cavity on the TEM04 mode at 
1,342 nm. The length of the cavity itself can be controlled using piezo-
electric actuators under the mirrors. We can stabilize the detuning 
between the D2 transition of lithium and the resonance frequency of 
our cavity in a large frequency range (>1 GHz), by using a sideband 
of the 671 nm beam sent to a saturated absorption spectroscopy 
cell. A feedforward scheme acting on both cavity and laser allows us 
to rapidly vary the cavity–atom detuning within the experimental 
sequence (maximum slew rate of 0.1 GHz ms−1) and holding the atoms 
in the cavity dipole trap. The light-shifting laser is stabilized using a 
commercial wavemeter.

Preparation of atoms
We prepare an atomic cloud with a target atom number and size using a 
combination of laser cooling, spatial selection and cavity-assisted feed-
back techniques. We start by loading the atoms from a magneto-optical 
trap directly into the intracavity standing-wave dipole trap, with a 
temperature of about 200 μK and trap frequencies of ω⊥/2π = 22 kHz 
and ω∥/2π = 1.4 MHz in the transverse and longitudinal directions, 
respectively.

At this point, the cavity resonance frequency is set 1 GHz 
red-detuned with respect to the D2 transition. We then start an optical 
molasses phase using the magneto-optical trap beams and probing 
the cavity using light detuned by a fixed amount with respect to the 
resonance of the empty cavity. The dispersive shift in the cavity is 
reduced as atoms are lost during the molasses, until the probe becomes 
resonant with the cavity, leading to an increased transmitted photon 
flux detected by a single-photon counter. The molasses is stopped 
when the target atom number set by the predefined dispersive shift is 
reached and the sequence can continue. When turning off the optical 
molasses beams, we make sure that all the atoms are optically dep-
umped into the 2SF=1/21/2  manifold.

At this point of the sequence, the atomic cloud measures a length 
of 0.5 mm, populating about 750 pancakes, each containing between 
0.4 and 4.0 atoms on average. We empty all but the central 180 sites 
using radiation pressure, by imaging an opaque mask on the centre of 
the cloud with a laser resonant on the D2 transitions (Extended Data 
Fig. 1a). We then shift the cavity on resonance within 30 ms with the 
2SF=3/21/2 –2P3/2 transition, leading to a detuning of 228 MHz (hyperfine 
splitting of 6Li) with respect to the 2SF=1/21/2 –2P3/2 transition resonant with 
the atoms.

We then perform fast cavity transmission spectroscopy by sweep-
ing a weak probe over the cavity resonance. The dispersive shift in the 
cavity is used to extract the initial number of atoms in the F = 1/2 state. 
A similar sweep is performed after the interrogation of the disordered 
system. Together, they allow for the characterization of probe-induced 
atom losses on a shot-to-shot basis.

The deterministic preparation suppresses drifts in the atom num-
ber and allows for long-term averages of the experimental results. 
However, we still observe shot-to-shot fluctuations in the atom number 
that stem from the Poissonian nature of the trap loading and losses and 

the atom removal procedure described above. The standard deviation 
of these fluctuations is about 35 and 60 atoms for the data presented 
in Figs. 2 and 3, respectively.

Implementation of disorder
We encode the two-level system using the 2SF=1/21/2  (|g〉) and 2P3/2 (|e〉) 
states of our 6Li atoms. The transition frequency of the atoms can be 
tuned by light shifting the excited state |e〉. In particular, this is achieved 
by dressing the 2P3/2 state with the higher-lying 4D5/2 manifold using a 
control laser at 460 nm detuned from resonance (Fig. 1c) by ∆blue. We 
first calibrated the light shift of the excited state—due to a single Gauss-
ian beam with a waist of 120 μm at ∆blue  = 50 MHz—by performing 
absorption spectroscopy of the D2 transition, similar to another work55. 
Taking the absorption images of the cloud at different imaging frequen-
cies, we reconstructed the spatial distribution of the light shift of one 
of the two identical beams that generate the light-shifting lattice when 
sent together (Extended Data Fig. 1d). We performed this spectroscopy 
both in situ and after releasing the atoms from the cavity dipole trap, 
allowing us to measure the trap-related shift of the 2P3/2–4D5/2 transition 
to be 90 MHz.

Furthermore, we characterized the dependence of the cavity 
transmission spectrum on the detuning of the light-shifting laser, show-
ing an avoided crossing for both states of the Autler–Townes doublet, 
particularly the light-shifted single-photon 2S1/2–2P3/2 transition and 
two-photon 2S1/2–4D5/2 transition (Extended Data Fig. 1e). We observed 
increased atom losses for small detunings of the light-shifting laser, 
pointing towards radiation-pressure-induced atom losses, occurring 
when atoms are promoted to the 2P3/2 state during the spectroscopic 
measurements. We minimized this effect by choosing the maximal 
detuning (400 MHz blue detuned from the 2P3/2–4D5/2 transition), 
allowing us to go up to W = 26 MHz for the maximum available power 
of the laser of 7.3 mW per lattice beam.

The light-shifting laser produces a dipole potential on the atoms 
in the ground state of about 5 × 10−6 smaller than the light shift of the 
2P3/2 state, negligible compared with the intracavity trapping potential.

Both light-shifting lattice beams are linearly polarized perpen-
dicular to the cavity axis, and set the direction of the quantization axis. 
We then probe the cavity using π-polarized light, to avoid any vector 
light-shift effect of the light-shifting beam. Because atoms reside in 
the F = 1/2 hyperfine manifold, the π transition used for cavity inter-
rogation is free of tensor light-shift effects. As a result, even though 
our sample comprises an incoherent mixture of the two magnetic 
sublevels of the F = 1/2 manifold, the two components experience a 
strictly identical light shift and probe beam, contributing equally to 
the signal without further broadening effects. Cross-optical pumping 
between the two does not deteriorate the signal in the linear-response 
regime explored in this work.

Interrogation
Once the preparation phase is completed, we tune the cavity to the 
desired length and illuminate the cloud with the light-shifting lattice. 
We send a cavity probe pulse with a duration of 5 or 60 μs for the meas-
urements presented in Figs. 2 and 3, respectively. During this measure-
ment, we monitor the photons leaking out of the cavity using a 
single-photon counter, to infer the optical response. At zero magnetic 
field, the transition between |g〉 and |e〉 is not closed, and an atom in the 
2P3/2 state can decay into the F = 3/2 ground-state manifold, denoted 
as an auxiliary state |a〉. This state is not coupled to the cavity field, 
owing to the large hyperfine splitting. Since the decay can only happen 
from state |e〉, the population accumulated in the F = 3/2 state is directly 
proportional to the excited-state population ⟨ ̂Sz⟩ integrated over the 
probe-pulse duration.

The population of the F = 3/2 state is measured after the interroga-
tion of the disordered system using a cavity transmission spectroscopy, 
with the cavity tuned on resonance with the F = 3/2 to 2P3/2 transition 
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(Extended Data Fig. 2b, right). In this configuration, the power of the 
cavity transmission is suppressed by 1/(1 + η)2 in the presence of a single 
atom in the F = 3/2 state, yielding a single-atom-level sensitivity for the 
detection of atomic response.

In practice, we implement the detection by sweeping the fre-
quency of the on-axis probe over the cavity resonance, yielding an aver-
age photon count of four photons per sweep for the empty |a〉 manifold 
(Extended Data Fig. 2c (inset), green histogram). The frequency sweep 
is essential since it removes the systematic effects of dispersive shifts 
on the depumping detection resulting from the presence of atoms 
in the |g〉 state. Extended Data Fig. 2c shows the dependence of the 
number of transmitted photons on the laser power during interroga-
tion, showing the expected exponential trend (see the ‘Measurement 
of atomic susceptibility’ section), allowing for the characterization of 
atomic susceptibility. At large probe powers, we observe a deviation 
from the exponential model that is due to saturation effects and atom 
losses. The data presented in this work were measured at different 
probe powers, and the measurements with an average photon count 
below 1.5 photons per sweep were neglected (Extended Data Fig. 2c, 
dashed line), ensuring that no additional broadening of the resonances 
is introduced.

Susceptibility in the near-resonant regime
In this section, we provide some details on the calculations of the sus-
ceptibility in the near-resonant regime, whose results are presented in 
the ‘Near-resonant regime and grey states’ section.

In our calculations, we account for fluctuations in both atom 
number N and atom–cavity couplings g. Specifically, we average the 
susceptibility over 1,000 different values of N randomly sampled from 
a normal distribution. The mean and standard deviation of the N dis-
tribution have been determined by fitting the experimental data at 
W = 0. For each value of N, we consider a generalized version of the 
Tavis–Cummings Hamiltonian in equation (1), namely,

̂HTCr = ∆ca ̂a† ̂a +
N
∑
i=1
gi (σ̂+i ̂a + σ̂−i ̂a†) +

N
∑
i=1
ϵi
σ̂zi
2 , (4)

where couplings gi are randomly generated to account for the finite 
temperature of atoms and the polarization of probe light. Specifically, 
the gi values are proportional to the square root of the cavity-field 
intensity at the atom positions, which are extracted from a thermal 
distribution (the ‘Preparation of atoms’ section provides the param-
eters). We also account for the fact that the N atoms are randomly 
distributed across ~100 pancakes: to this end, we randomly select  
N site energies among the set ϵi ∈ {W

2
cos(2πλlj/λs) , j = 1,… , 100}, where 

λl = 671 nm is the lattice wavelength and λs = 1,040 nm is the light-
shift wavelength.

For each value of N, as per other work35,56, we employ a Green func-
tion formalism in the linear-response regime. In such a situation, the 
cavity susceptibility (cavity transmission) at a given probe–cavity 
detuning ∆pc is

χp(∆pc) ∝ −Im (⟨G| ̂a 1
∆pc − ℋ̂

̂a† |G⟩) , (5)

where |G〉 is the ground state. In equation (5), we introduced the 
non-Hermitian Hamiltonian as

ℋ̂ = ̂HTCr − i
Γ

2

N
∑
i=1
σ̂+i σ̂

−
i − i

κ
2

̂a† ̂a , (6)

which includes the generalized Tavis–Cummings Hamiltonian (equa-
tion (4)) and two terms describing cavity losses and atom decay, respec-
tively. Similarly, the atomic susceptibility is computed by summing the 
transition probabilities to all the atomic states σ̂+i |G⟩, namely,

χa(∆pc) ∝
N
∑
i=1

|
|
|
⟨G| σ̂−i

1
∆pc − ℋ̂

̂a† |G⟩
|
|
|

2

. (7)

Measurement of atomic susceptibility
We now show that the atomic susceptibility χa(∆pa) (see the 
‘Large-detuning regime and LMG model’ section), can be extracted 
from the measurements of atomic population PA(t) of the auxiliary state 
|a〉 at a given point in time t. Intuitively, it is plausible that χa(∆pa) and 
PA(t) should be connected: on one hand, χa(∆pa) is simply a rescaling of 
the absorptive part of the dynamic susceptibility χ″(∆pa) (equations 
(13)–(15)) of the effective model described by equation (11) and thus 
quantifies the time-averaged energy absorbed by this system when 
subjected to a perturbation at frequency ∆pa. On the other hand, the 
system can absorb energy from the probe beam only via coherent 
excitations of the atomic population from state |g〉 (2SF=1/21/2 ) to |e〉 (2P3/2). 
The population of state |a〉 (2SF=3/21/2 ) can then change only via spontane-
ous decay from state |e〉 at rate Γa. Therefore, detecting PA(t) > 0 implies 
that the system has absorbed energy via atomic excitations. Further-
more, the probability to excite the system into a collective state con-
taining an atomic excitation on probing is maximized when the probe 
frequency ∆pa is resonant with transitions from the system’s collective 
ground state. It follows that the total atomic population PA(tmeas) found 
in state |a〉 after the interrogation time is a measure of how susceptible 
the effective model was to excitations introduced by the probe at  
frequency ∆pa.

We give the above intuition an analytic foundation by modelling 
the experimental sequence (see the ‘Preparation of atoms’, ‘Implemen-
tation of disorder’ and ‘Interrogation’ sections) via a Lindblad master 
equation (Supplementary Section 1.2 provides details of the deriva-
tion). We derive an equation of motion for PA(t) in terms of χa(∆pa) using 
the fact that the probe beam’s amplitude Ωp is much weaker than the 
natural linewidth Γ of 6Li, that is, that atomic excitations decay at a rate 
much faster than the rate at which they are introduced by the probe 
beam, namely, |Ωp| ≪ Γ. This yields the relation

PA(tmeas) = 1 − exp(− Γa

(Γ /2)2
|||
gΩp

∆ca

|||

2

χa(∆pa)tmeas) , (8)

evaluated here at the measurement time t = tmeas. This result confirms 
the monotonic relation between PA(t) and χa(∆pa). It is obtained with 
respect to the experiment’s initial conditions pG(0) = 1 and PA(0) = 0, 
and is valid for times t ≫ (Γ/2)−1.

The saturation of PA(tmeas) as a function of probe power |Ωp|2 
(Extended Data Fig. 2c) is captured by equation (8). Further, for a given 
probe power, the saturation rate is maximal at those probe frequencies 
∆pa at which χa(∆pa) is the largest: since population transfer from |G〉 
to state |m〉 of the single-excitation manifold (SEM) (see the ‘Effective 
model and atomic susceptibility in the large-detuning regime’ section) 
is maximized when the probe frequency is resonant with the transition 
frequency EmG (that is, resonant with a frequency at which the system 
is most susceptible to perturbations, as quantified by χa(∆pa)), the 
concomitant accumulation of population in the auxiliary state is also 
maximized. Conversely, for a fixed measurement time tmeas, saturation 
of the signal PA(tmeas) can be suppressed by reducing the probe’s power. 
This is crucial for the precision of the experimental data presented in 
Fig. 3 (see the ‘Interrogation’ section) where the experimental tech-
nique for measuring PA(tmeas) is discussed.

Effective model and atomic susceptibility in the 
large-detuning regime
In this section, we demonstrate that the dynamics of our system are 
described by the effective Hamiltonian of equation (2) when the cavity 
is tuned far into the dispersive regime, such that ∆ca ≡ ωc − ωa is the 
dominant energy scale.
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Our starting point is the disordered Tavis–Cummings Hamiltonian 
̂HTC, which is expressed in equation (1) relative to the rotating  

frame of the bare atomic resonance frequency ωa. Within this  
rotating frame, the probe beam is described by the perturbation  
̂V(t) = Ωpe−i(ωp−ωa)t ̂a† + h.c., with probe-laser and Rabi frequency ωp and 

Ωp, respectively.
The total Hamiltonian is ̂HTC + ̂V(t) , and thus, the equation of 

motion of the (Heisenberg picture) photonic operator ̂a(t) is

∂t ̂a(t) = −i [ ̂a(t), ̂HTC + ̂V(t)] − (κ/2) ̂a(t), (9)

where the last term takes into account cavity losses. Using the fact that 
these are sub-dominant, that is, ∆ca ≫ κ (see the ‘Effective model and 
atomic susceptibility in the large-detuning regime’ and ‘Large-detuning 
regime and LMG model’ sections), the cavity mode adiabatically follows 
the evolution of the spin degrees of freedom as

̂a(t) = −
g√N ̂S

−
+Ωpe−i(ωp−ωa)t

∆ca
. (10)

Substituting this expression into ̂HTC + ̂V(t) eliminates the cavity 
mode, and one obtains (up to an irrelevant constant term) the effective 
spin Hamiltonian as

̂H(t) = ̂HLMG − ̂𝒱𝒱𝒱t) , where (11)

̂𝒱𝒱(t) = g√N
∆ca

(Ωpe−i∆pat ̂S
+
+ h.c.) , (12)

with ∆pa ≡ ωp − (ωa + 2g2/∆ca) and ̂HLMG is as per equation (2). We note 
that the above equations are obtained after performing an additional 
rotating-frame transformation, which serves only to remove an other-
wise constant contribution of (2g2N/∆ca) ̂S

z
 to equation (2).

Having obtained the above effective model, we now derive the 
form of atomic susceptibility χa(∆pa) in the dispersive regime. In par-
ticular, χa(∆pa) is obtained from the absorptive part χ″(∆pa) of the 
dynamic susceptibility of effective model ̂HLMG of equation (2), when 
the latter is initialized in its ground state |G⟩ ≡ ⨂N

i=1|g⟩i and subsequently 
subjected to the probe via the interaction ̂𝒱𝒱(t) of equation (12). Studying 
the dynamic susceptibility is motivated by the fact that the probe beam 
is weak (|Ωp| ≪ Γ), so that one may treat ̂𝒱𝒱(t) as a perturbation within the 
regime of linear response57. In particular, |Ωp| ≪ Γ implies that atomic 
excitations decay much faster than the rate at which they are intro-
duced into the system, so that one may study the limit in which there 
is at most a single excitation present in the system. That is, one needs 
to only consider the eigenstates |G〉 and {|m⟩}Nm=1, where the latter set of 
states forms the SEM of ̂HLMG. We denote the respective eigenenergies 
as ℰG, ℰm, and the spectral gaps as EmG ≡ ℰm − ℰG, for m = 1, …, N. With 
respect to this basis, we then have

χ′′(∆pa) = π ∑
m∈SEM

||||
⟨m|

g√NΩp

∆ca
̂S
+
|G⟩

||||

2

δ(∆pa − EmG). (13)

In what follows, we approximate the Dirac delta functions in equation 
(13) as Lorentzian responses:

δγ(ω) ≡
γ/π

γ2 + ω2 such thatδ(ω) = lim
γ→0

δγ(ω). (14)

Here γ is the linewidth of the (normalized) resonance, which  
according to the Wiener–Khintchine theorem58,59 corresponds  
to a finite experimental measurement time 1/γ. The dimensionless 
atomic susceptibility χa(∆pa) (Fig. 3) is then finally obtained from 
χ″(∆pa) as

χa(∆pa) = γ|||
∆ca

gΩp

|||
2
χ′′(∆pa)

= ∑
m∈SEM

N||⟨m| ̂S
+
|G⟩||

2 γ2

γ2+(∆pa−EmG)
2

≡ ∑
m∈SEM

χa,m(∆pa).

(15)

At zero disorder, only the first excited state |m = 1⟩ = ̂S
+
|G⟩ contributes, 

such that on resonance, χa(∆pa = E1G) = χa,1(E1G) = N (Fig. 4, inset).

Participation ratio and its relation to susceptibility
Here we prove the relation, given in inequality (3), between the 
atomic susceptibility and participation ratio. The participation ratio 
quantifies the extent to which a given state is (de)localized over a 
basis of interest. In our context, we wish to study the (de)localization 
of an SEM eigenstate |m⟩ ≡ ∑N

i=1 cmiσ̂
+
i |G⟩  of the LMG Hamiltonian of 

equation (2) over the spins i of the system. This is quantified by the 
participation ratio as

PRm = (
N
∑
i=1

|cmi|4)
−1

∈ [1,N], (16)

of which the limiting values 1 and N are respectively obtained at cmi = δi,i∗ 
(full localization at some site i*, achieved at W → ∞), and cmi =

1
√N
, ∀ i  

(full delocalization over all N sites, achieved at W → 0).
Our proof of inequality (3) relies on the identification of PR1 and 

χa,1(E1G) (equation (17)) as monotonic functions of different Rényi entro-
pies Hα( ⃗p ) =

1
1−α

log(∑ip
α
i ) , and then exploiting the hierarchy 

Hα1 ( ⃗p ) ≥ Hα2 ( ⃗p ) for any real numbers α2 ≥ α1 ≥ 0 (ref. 60). To this end, we 
note that (1) on resonance ∆pa = EmG, the mth summand of the atomic 
susceptibility defined in equation (15) reduces to

χa,m(EmG) =
||||

N
∑
i=1
cmi

||||

2

∈ [1,N], (17)

whose limiting values are obtained with the same distributions of cmi 
as for PRm (equation (16)). (2) Using Perron–Frobenius theory61, one 
can show that the lowest SEM eigenstate |m = 1〉 of ̂HLMG (as defined in 
equation (2)) satisfies c1i ≥ 0, ∀ i = 1, …, N. Hence, one has that c1i = +√p1i, 
where pmi ≡ |cmi|

2 are the probabilities associated to the amplitudes cmi.
Now, for the identification with Rényi entropies, we expand both 

sides of inequality (3) and employ point (2) above. This yields

χa,1(E1G) =
|||∑i
c1i
|||

2

= (∑
i
pα11i )

1
1−α1

= exp(Hα1 (p⃗ 1)),

PR1 = (
N
∑
i=1
|c1i|4)

−1

= (∑
i
pα21i )

1
1−α2

= exp(Hα2 (p⃗ 1)),

(18)

where α1 = 1/2, α2 = 2 and ⃗p 1 ≡ (p11,p12,… ,p1N). Since exp(x) is monotonic, 
the hierarchy of Rényi entropies is preserved and thus

exp(Hα1 ( ⃗p 1)) ≥ exp(Hα2 ( ⃗p 1)) forα1 = 1/2 andα2 = 2. (19)

This concludes the proof.
We briefly comment on how the participation-ratio bound of 

inequality (3) may be measured: due to the finite atomic linewidth (see 
the ‘Measurement of atomic susceptibility’ section), extracting only 
the m = 1 summand of the atomic susceptibility is not feasible, as nearby 
resonances will add to the measured signal. What can be feasibly 
extracted is the amplitude χFMa  of the full susceptibility of equation (15), 
which satisfies χFMa ≡ χa(E1G) ≥ χa,1(E1G) , by definition. This is the data 
shown in Fig. 4.
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In closing, we note that inequality (3) (as well as its looser form in 
terms of the full χa(E1G)) becomes an equality in both limits of |m = 1〉 
being fully (de)localized. This, too, follows from the above expression 
in terms of Rényi entropies: for all α ≥ 0, Hα( ⃗p ) = log(N)  if pi = 1/N,  
∀ i = 1, …, N (maximal uncertainty), and Hα( ⃗p ) = 0 if pi = δi,i∗ for some 
i* = 1, …, N (maximal certainty).

The above discussion exemplifies that the participation ratio is 
an entropic measure, quantifying the degree of (un)certainty ((de)
localization)—obtained from some state’s expansion coefficients—as 
to its spread over a chosen set of degrees of freedom (basis). In fact, for  
any basis {|i〉}, the generalized inverse participation ratio IPRq(|ψ〉)  
is related to Rényi entropies via its multifractal dimension Dq: 
combining equations (2) and (3) in Supplementary Information, 

one has Dq =
d

1−q
log(IPRq(|ψ⟩))

log(N)
. As in the above discussion, this can be 

expressed in terms of Rényi entropies as Dq = d
Hα=q(p⃗ )
log(N)

, where 

⃗p = (|⟨i = 1|ψ⟩|2,… , |⟨i = N|ψ⟩|2) . This relation exemplifies the intimate 
link between entropy and quantifiers of a state’s (de)localization  
properties, and has as an immediate consequence that Dq decays mono-
tonically with q ≥ 0.

Numeric simulation of the large-detuning regime
We compute χa and participation ratios by diagonalizing the random LMG 
Hamiltonian of equation (2) for system sizes N = 303 and 610. These 
system sizes correspond to the mean atom numbers realized in the experi-
ment, which were determined from the dispersive shift JN = g2N/∆ca 
measured at zero disorder (W = 0), for each iteration of the measurement 
sequence (see the ‘Preparation of atoms’ section). The effect of the atoms’ 
thermal motion on the value of g was taken into account for the conver-
sion of the dispersive shifts into atom numbers, as well as for the matrix 
elements of the Hamiltonian. Taking the mean atom number across all 
the experimental runs yields the system sizes quoted above.

We choose the random energy shifts ϵi in two different ways: (1) 
from the incommensurate light-shift potential generating correlated 
quasi-random disorder (as discussed in the main text) and (2) independent 
and identically distributed ρa. For both cases, we find quantitative agree-
ment of χa as well as the participation ratio, within numerical accuracy.

The Hamiltonian matrix is constructed with respect to the basis 
states |i⟩ = σ̂+i |G⟩ of the SEM, and diagonalized exactly. In the absence 
of disorder, that is, ϵi = 0 ∀ i, the diagonalization is analytically tractable, 
and the eigenenergies are ℰ1 = −NJ/2 and ℰm = NJ/2 for m = 2,…, N. Con-
sequently, the zero-disorder ferromagnetic gap ∆FM ≡ ℰ2 − ℰ1 = JN, as 
mentioned in the main text. However, the presence of disorder mixes 
the Hamiltonian’s zero-disorder eigenstates, necessitating the analysis 
through numerical diagonalization. Using the numerically determined 
eigenenergies and eigenstates, we compute the atomic susceptibility 
and participation ratio using equations (15) and (16), respectively. We 
average these quantities with respect to 2,000 disorder realizations 
of the Hamiltonian, the results of which are illustrated in Figs. 3 and 4. 
The corresponding variances are strongly suppressed, falling within 
the linewidths of the simulated data.

Data availability
The datasets generated and analysed in the current study are available 
via Zenodo at https://doi.org/10.5281/zenodo.7074544 (ref. 62).

Code availability
The codes used for the analysis of the experimental data and for simu-
lations are available from the corresponding author upon reasonable 
request.
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Extended Data Fig. 1 | Characterization of light-shift of excited state. a, 
Absorption picture of an atomic cloud in the cavity dipole trap. The grey needle 
in the middle is used to shield central atoms from the absorption light, making it 
possible to empty the outer pancake traps using the radiation pressure force of 
the absorption imaging. b and c, Absorption image of the cloud at maximal shift 
(green arrow in d) and zero shift (red arrow in d). d, Spatially-resolved absorption 
spectroscopy of the D2 transition in the presence of a single lattice beam 
(Gaussian beam centred on x = 0 mm with waist of 120μm). Each horizontal line 
of plot d is the y-integrated optical density. The light shifting laser was 50 MHz 
blue detuned from the 2P3/2–4D5/2 transition. We can observe both resonances 

of the Autler–Townes doublet, the strong light-shifted single photon transition 
(top) and the faint two-photon transition (bottom). e, Cavity transmission 
spectroscopy for cloud illuminated with homogenous light-shifting beam. The 
dashed blue lines indicate the expected resonance frequencies of the Autler–
Townes doublet. f, 2D map of cavity transmission spectra for different detunings 
of the light-shifting laser from the 2P3/2–4D5/2 transition. Each horizontal line is 
a cavity transmission spectrum. In the colorbar, red indicates a large number of 
photons transmitted through the cavity. The black horizontal dashed line marks 
the configuration of panel e.
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Extended Data Fig. 2 | Experimental sequence and measurement of atomic 
susceptibility. 2c: data are presented as mean values +/- SEM, Averages run over 
371 measurements. a, Timeline of the experimental sequence. The core elements 
are the interrogation of the disordered cavity–atom system (red) and the 
subsequent detection of depumped atoms in the |a⟩(F = 3/2) state. b, Illustration 
of the probe configurations during interrogation and depumping detection.  
I, When probing the disordered system, the excited state of the atoms is dressed 
with the light-shifting laser, indicated by the blue colour of the level and the shift 
ϵ. The photons entering the cavity from the probe have two decay channels. 
Either they leak out of the cavity on the other side (red wiggled arrow) where  
they will be detected by a single photon counter, or they can be lost by free- 
space spontaneous emission of an atomic excitation (orange wiggled line).  

At zero-magnetic field, the transition from |g⟩ to |e⟩ is not closed, therefore 
spontaneous emission events can depump the atom into the |a⟩ state. II, These 
depumped atoms can be detected by measuring the cavity transmission. If the 
cavity is on resonance with the |a⟩–|e⟩ transition and only a single atoms is in state 
|a⟩ the transmission gets strongly suppressed. c, Calibration of depumping 
signal. The mean number of transmitted photons during the depumping 
detection is plotted against the probe power during the interrogation of the 
disordered system. The error bars of the data represent statistical fluctuations. 
The orange line shows a fit of the theoretically expected relation [see Eq. (8)].  
The inset shows a histogram of detected photons for low (green) and high (red) 
probe powers (see arrows on x-axis for configuration).
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1 Supplementary Information

1.1 Structure of the eigenstates in the near-resonant
regime: multifractality and quasi-random potential

In this section, we discuss the structure of the eigenstates of the TC Hamil-
tonian Eq. (1) in the near-resonant regime (∆ca = 0). As recently found in
Ref. [1], the eigenstates of the TC Hamiltonian with random uniformly dis-
tributed atomic energies are always multifractal, for any non-vanishing disorder
strength. Here, we show that the same result is obtained with a correlated
energy potential,

ϵi =
W

2
cos(2πQi), (S1)

which is incommensurate to the lattice spacing [here we choose Q = (
√
5 −

1)/2]. This energy potential, in the presence of nearest-neighbour hopping and
in the absence of a cavity mode, constitutes the well-studied Aubry–André–
Harper (AAH) model, which has a localisation–delocalisation transition in the
thermodynamic limit [2, 3]. This is in contrast to the one-dimensional Ander-
son model, characterised by a random uniformly distributed energy potential
with nearest-neighbour hopping, which has no transition and is always localised
in the N → ∞ limit [4]. Moreover, the correlated potential in Eq. (S1) with
power-law hopping has a rich phase diagram, including localised, delocalised
and multifractal phases, with mobility edges [5]. Therefore, it is important to
check whether this energy potential affects the results of Ref. [1] regarding the
multifractality of the TC Hamiltonian eigenstates.
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SUPPLEMENTARY FIG. S1 Multifractality of the eigenstates of the TC
Hamiltonian near resonance. a, Squared amplitudes of a representative grey-state eigen-
function of the TC Hamiltonian Eq. (1) for ∆ca = 0 on the atoms |i⟩ = σ̂+

i |G⟩, as a function
of the atom index i. Here, N = 50 and three different disorder strengths have been con-
sidered (see legend in panel c). b, Squared amplitudes of the same eigenfunctions shown in
panel a, here as a function of the atomic energies ϵi normalised by the disorder strength. c,
Multifractality of the eigenfunctions. The τq exponent has been determined from a power-
law fit of the generalised inverse participation ratio Eq. (S2), averaged over all the grey
states, as a function of N . For the fitting procedure, several values of N from 50 to 2000
have been considered. The dashed line is the analytical result obtained for the TC Hamil-
tonian with random uniformly distributed atomic energies in the thermodynamic limit [1].
In all panels, we neglect the polaritons, and we normalised the grey-state eigenfunctions to
their total probability on the atoms.
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In Fig. S1a, the squared amplitudes of some representative eigenfunctions
|E⟩ on the atoms |i⟩ = σ̂+

i |G⟩ are shown as a function of the atom index
i. Different disorder strengths have been considered (see legend in panel c),
which are comparable to the range covered by the experiments (see Fig. 2 in
the main text). As one can see, the eigenfunctions are characterised by few
highly occupied atoms, and many atoms with a small occupation probability,
equally distributed in space. On the other hand, the occupation probabilities
as a function of the atomic energies have a power-law dependence, as shown
in Fig. S1b. These same features characterise the multifractal eigenstates
of the TC Hamiltonian with random, uniformly distributed atomic energies,
as shown in Ref. [1]. Then, following Ref. [1], we quantify the multifractal
behaviour of the eigenfunctions by analyzing the scaling of their generalised
inverse participation ratio with the system size,

IPRq(|ψ⟩) =
N∑
i=1

|⟨i|ψ⟩|2q ∝ N−τq . (S2)

The definition in Eq. (S2) is valid for any normalised wavefunction |ψ⟩, and
here we consider the eigenfunctions |ψ⟩ = |E⟩. The τq exponent is related to
the multifractal dimension Dq by the relation [6]

Dq = d
τq

q − 1
, (S3)

where d is the physical dimension of the system. In Fig. S1c the dependence
of τq on the power q is shown for different disorder strengths. The numerical
results match very well the analytical results of Ref. [1] (dashed line) up to some
deviations around q ≈ 1/2, due to the finite-size N . These results confirm that
the eigenfunctions are multifractal with the correlated potential in Eq. (S1)
that has been realised in the experiment described in the main text.

1.2 Modelling via Lindblad equation

Here, we provide further details on the model used to derive the relation
between the atomic susceptibility χa and the population of the auxiliary state
PA(t), given in Eq. (8) of the Methods.

We model the experimental sequence of Secs. 7.2–7.4 via a Lindblad master
equation, which allows us to derive an equation of motion for PA(t) in terms
of χa(∆pa). We work in a rotating frame generated by N∆paŜ

z, such that

the Hamiltonian of Eq. (11) is time-independent, i.e., V̂(t) → V̂ = V̂(0). The
Lindblad equation is then given by

∂tρ̂(t) = −i
[
ĤLMG −N∆paŜ

z + V̂, ρ̂(t)
]
+
(
D[Γg; {σ̂−

i }]+D[Γa; {|a⟩⟨e|i}]
)
ρ̂(t),

(S4)
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where the superoperatorsD[γ′;{L̂i}]ρ̂(t)≡ γ′
∑N

i=1

(
L̂iρ̂(t)L̂

†
i−
{
L̂†
i L̂i, ρ̂(t)

}
/2
)

describe dissipation at a rate γ′, due to jump processes generated by {L̂i}.
Specifically, the superoperators with rates Γg and Γa describe spontaneous
decay of atoms from |e⟩ to |g⟩ and |a⟩, respectively. The decay rates Γg,Γa are
branching ratios of the natural linewidth Γ = 5.8 × 2πMHz of the D2 line of
6Li, i.e., Γg+Γa = Γ. Spontaneous emission from |a⟩ to |g⟩ can be neglected on
the timescales of the experiment, as for 6Li it is forbidden by selection rules.

The presence of a single atom in state |a⟩ drastically suppresses the trans-
mission signal, due to the cavity’s high cooperativity. The experiment must
therefore be executed in a regime where at most one atom is in state |a⟩ so
as to avoid saturation of the transmission signal (see Fig. E2c). We therefore
project the dynamics of Eq. (S4) onto the Hilbert subspace with at most one
excitation and at most one atom in the auxiliary state |a⟩. We then utilise a sep-

aration of scales to derive the equation of motion for PA(t) ≡
∑N

i=1 ⟨ai|ρ̂(t)|ai⟩
(where |ai⟩ ≡ |a⟩⟨g|i |G⟩): Within the time domain t≫ (Γ/2)−1, all coherences
as well as the SEM populations can be adiabatically eliminated from the rate
equations of the remaining populations pG(t) and {⟨ai|ρ̂(t)|ai⟩}Ni=1. Doing so,
one finds that ∂tpG(t) = −∂tPA(t) (conservation of atomic population), and
to lowest order in (Γ/2)−1

∂tpG(t) = − Γa

∑
m∈SEM

|VmG|2

(Γ/2)2 + (EmG −∆pa)2
pG(t)

= − Γa

(Γ/2)2

∣∣∣∣gΩp

∆ca

∣∣∣∣2 χa(∆pa)pG(t).

(S5)

To obtain the relation to χa(∆pa), as defined by Eq. (15), we have used that

(within the rotating frame of N∆paŜ
z) the matrix elements VmG follow from

Eq. (12) as VmG =
g
√
NΩp

∆ca
⟨m|Ŝ+|G⟩, and we have identified the Lorentzian

response of Eq. (14), with linewidth γ = Γ/2.
For the initial conditions pG(0) = 1, PA(0) = 0, we finally obtain the

relation stated in Eq. (8),

PA(tmeas) = 1− exp

(
− Γa

(Γ/2)2

∣∣∣∣gΩp

∆ca

∣∣∣∣2 χa(∆pa)tmeas

)
. (S6)

For further discussions of the properties of this relation, we refer the reader to
Sec. 7.6 of the Methods.

1.3 Finite-size scaling of the minimal ferromagnetic gap
in the large-detuning regime

Here, we analyse the finite-size scaling of the minimal ferromagnetic gap ∆FM

of the disordered LMG model in Eq. (2). For this, we first Kac normalise the
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SUPPLEMENTARY FIG. S2 Finite-size scaling of the minimal ferromagnetic
gap of the random LMG model. a, Disorder averaged ferromagnetic gap ∆FM/J of the
Kac-normalised random LMG Hamiltonian, as a function of disorder strength W/J . Only
data for the quasi-disordered case is shown as a representative. Lighter to darker shades of
blue correspond to increasing N from 20 to 2000. For each N , the minimal gap ∆⋆

FM/J
and its location W ⋆/J are determined from a parabolic fit to the corresponding curve. b–
d, Schematic distributions of the considered disorders: quasi-random and i.i.d. ϵi from ρa,
and i.i.d. ϵi from uniform distribution, left to right. e and f, log

(
∆⋆

FM/J
)
and log(W ⋆/J)

versus log(N), respectively, for the quasi-random ρa (blue circles), uncorrelated ρa (green
triangles), and uniform (red squares) disorder distributions. The errors in the parabolic fits
are smaller than the size of the markers. From linear fits to the data points for the quasi-
random (dashed) and the uncorrelated (dotted) ρa, we find W ⋆/J ∝ Nα with α ≈ 0.98 and
0.99, respectively, indicating linear dependence. For the uniform disorder distribution, we
fit a logarithmic curve (dot-dashed), which suggests that W ⋆/J ∝ log(N). This is verified
by the linear fit (dot-dashed) in the inset of e, where the y-axis depicts W ⋆/J instead
of log(W ⋆/J). In contrast, the minimal ferromagnetic gap ∆⋆

FM/J scales as N−β with
β ≈ 1.00, 0.96, and 0.82 for the considered disorders, respectively.

all-to-all spin-exchange interaction term in the Hamiltonian by N−1, which
renders the model extensive. In contrast to the experimental scenario, Kac
normalisation is necessary to theoretically analyse any critical behaviour stem-
ming from the competition between different terms in the Hamiltonian. Under
this rescaling, the zero-disorder gap is ∆FM/J = 1, which decreases to a min-
imal value ∆⋆

FM/J as the disorder strength W/J is increased. We denote the
disorder strength at which this minimum is realised asW ⋆/J . The minimal gap
is indicative of significant changes in the ground-state properties in a finite-size
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system. We perform a finite-size scaling of ∆⋆
FM/J and W ⋆/J for the system

with (i) quasi-random disorder [sampled from the correlated energy potential
of Eq. (S1)], and compare it with (ii) uncorrelated disorder with distribution
ρa (as defined in Sec. 2 of the main text), and (iii) uniform distributions (see
Fig. S2).

The dependence of ∆FM/J on W/J is shown in Fig. S2a for the correlated
disorder, which (adapting for different scalings, see below) is representative
also of the two other studied cases. The minimal gap ∆⋆

FM/J , and its location
W ⋆/J , are determined by fitting a parabola to the minimum of the curves.
For all three disorder distributions, the gap ∆⋆

FM/J decreases as N−β (see
Fig. S2e), indicating that the gap disappears in the thermodynamic limit.
The gap location W ⋆/J , however, scales linearly with system-size (∝ Nα

with α ≈ 1) for the uncorrelated and correlated ρa (see Fig. S2f). In con-
trast, W ⋆/J ∝ logN for the uncorrelated uniform disorder (inset of Fig. S2f),
which is consistent with the vanishing Richardson’s superconducting gap,
which was estimated for uniform disorder from the mean level spacing [7].
These findings are in agreement with the generic behaviour of the critical dis-
order strength Wc for the Anderson localisation transition in models with a
high connectivity, which increases with the number of connections [8–11]. For
example, in a d-dimensional hypercube with coordination number z ∼ 2d,
one finds Wc ∝ d log d [10]. By visualising the all-to-all connectivity realised
in the large-detuning regime as a hypercube with dimension d ∼ N , we can
expect Wc ∝ logN to leading order. This similarity indicates the signifi-
cant change in localisation properties that a finite system experiences around
W ⋆/J , which is also supported by the decreasing trend in the PR (similar to
Fig. 4). Correlations in the disorder tend to delocalise the system more, con-
sistent with our finding in Fig. S2f. In the thermodynamic limit, however, the
infinitely-connected system does not support a localisation transition.
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