
PHYSICAL REVIEW E 95, 042135 (2017)
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The onset of thermalization in a closed system of randomly interacting bosons at the level of a single eigenstate
is discussed. We focus on the emergence of Bose-Einstein distribution of single-particle occupation numbers,
and we give a local criterion for thermalization dependent on the eigenstate energy. We show how to define the
temperature of an eigenstate, provided that it has a chaotic structure in the basis defined by the single-particle
states. The analytical expression for the eigenstate temperature as a function of both interparticle interaction and
energy is complemented by numerical data.
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I. INTRODUCTION

The subject of thermalization occurring in isolated quantum
systems of interacting particles has been developed in the last
decades due to various applications in nuclear and atomic
physics [1,2], as well as in view of basic problems of statistical
mechanics [3–5]. Recently, the interest in this subject has
increased due to experiments with cold atoms and molecules in
optical lattices [6] and trapped ions [7]. Correspondingly, many
theoretical and numerical studies have been performed in order
to understand the mechanism of thermalization in the absence
of a heat bath (see [5] and references therein). Nevertheless,
despite some studies about the onset of thermalization as a
function of various physical parameters such as the number of
particles [8], the strength of interparticle interaction [9], and
the choice of initially excited states [10], the role of these items
still remains open.

The mechanism driving thermalization in isolated systems
of interacting particles is associated with quantum chaos [11].
Different from the well developed one-body chaos theory,
many problems related to many-body chaos, such as the
thermalization of Fermi and Bose particles, are currently under
intensive study. Unlike classical chaos, which is intrinsically
related to the instability of motion with respect to a change in
initial conditions, quantum chaos manifests itself in specific
fluctuations of the energy spectra and in the chaotic structure
of eigenstates. As shown in [9], the properties of the energy
spectra are less important to the statistical relaxation toward a
steady-state distribution than the structure of the eigenstates in
the physically chosen many-particle basis. Therefore, the main
interest in the study of many-body chaos was shifted long ago
to the properties of many-body eigenstates.

Chaotic eigenstates play a key role in the statistical
description of isolated quantum systems. As stressed long
ago [12], conventional statistical mechanics can be estab-
lished on the level of individual quantum states and not
only by averaging over many states. This was confirmed
numerically decades ago (see, for instance, [11] and dis-
cussion in [13]). However, this fact has no practical con-
sequences unless the conditions for such a situation are
developed. One of the open problems in this field is to

establish these conditions for systems with a finite number of
particles.

To date, many problems have been addressed concerning
the problem of thermalization in isolated systems. Here we
raise a new one which is directly related to this issue. It is
already agreed that one can speak of thermalization on the
level of an individual state, and various characteristics of
thermalization have been under extensive study, such as the
relaxation of a system to steady state distributions after various
quenches, decay of correlations in time for observables and
their fluctuations after relaxation, etc. [6–10,14].

Now, in view of the basic concepts of statistical mechanics
and recent experiments with cold atoms and molecules [6]
it is natural to ask a question about the onset of the Bose-
Einstein distribution (BED) emerging on the level of a single
many-body eigenstate due to the interaction between bosons
and not to an external field or a thermostat. Below we
specifically initiate the study of the onset of BED in a finite
system of interacting bosons, which is expected to occur when
the interparticle interaction is strong enough. We suggest a
semianalytical approach able to reveal the conditions under
which an isolated many-body eigenstate can be considered
thermal and introduce its temperature in relation to the model
parameters.

II. THE MODEL AND BASIC CONCEPTS

At variance with eigenvalues, many-particle eigenstates are
defined by means of a suitable single-particle basis. The latter,
for its part, has direct relevance to physical reality, specifically,
to the choice of the mean field to which quantum observables
such as occupation numbers are referred. Correspondingly,
we assume that the total Hamiltonian H can be presented
as the sum of the mean field H0 describing noninteracting
(quasi)particles and a residual interaction V , modeled as a
two-body random interaction. Such a setup, based on a random
interaction, also serves as a good model for a deterministic
interaction between bosons [14], where the complexity in
many-body matrix elements emerges due to the complicated
nature of the interaction itself.
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In this paper we consider N identical bosons occupying
M single-particle levels specified by random energies εs

with mean spacing, 〈εs − εs−1〉 = 1. Let us notice that the
randomness in the single-particle spectrum is not strictly
necessary for the results obtained: it has been introduced
only in order to avoid the degeneracies in the unperturbed
many-body spectrum.

The Hamiltonian reads

H = H0 + V =
∑

s

εs a†
s as +

∑
s1s2s3s4

Vs1s2s3s4 a†
s1
a†

s2
as3as4 ,

(1)

where the two-body matrix elements Vs1s2s3s4 are random
Gaussian entries with zero mean and variance V 2. The
dimension of the Hilbert space generated by the many-particle
basis states is NH = (N + M − 1)!/N!(M − 1)!. Here we
consider N = 6 particles in M = 11 levels (dilute limit,
N � M) for which NH = 8008.

Two-body random interaction (TBRI) matrices (1) have a
quite long history. They were introduced in [15] and exten-
sively studied for fermions [16]. On the other hand, the case of
Bose particles has been less investigated, and only a few results
are known, typically for the dense limit, N � M [17,18].

The eigenstates of H can be generically represented
in terms of the basis states |k〉 = a

†
k1

· · · a†
kN

|0〉, which are
eigenstates of H0,

|α 〉 =
∑

k

Cα
k |k 〉, (2)

where it has been implicitly assumed that

H |α〉 = Eα|α〉 (3)

and

H0|k〉 = E0
k |k〉. (4)

A characterization of the number of principal components
Cα

k in an eigenstate |α 〉 can be obtained by the study of the
participation ratio,

Npc = 1/
∑

k

∣∣Cα
k

∣∣4
. (5)

If the number Npc of the principal components Cα
k is

sufficiently large (we will specify later how large it should
be) and Cα

k can be considered to be random and noncorrelated,
this is the case of chaotic eigenstates. This notion is quite
different from full delocalization in the unperturbed basis since
for isolated systems the eigenstates typically fill only a part of
the unperturbed basis [11].

To characterize the structure of the eigenstates, we use the
F function,

Fα(E) =
∑

k

∣∣Cα
k

∣∣2
δ
(
E − E0

k

)
, (6)

which is the energy representation of an eigenstate. From the
components Cα

k one can also construct the strength function
(SF) of a basis state |k 〉,

Fk(E) =
∑

α

∣∣Cα
k

∣∣2
δ(E − Eα), (7)

widely used in nuclear physics [19] and known in solid state
physics as the local density of states. The SF shows how the
basis state |k 〉 decomposes into the exact eigenstates |α 〉 due
to the interaction V . It can be measured experimentally, and
it is of great importance since its Fourier transform gives the
time evolution of an excitation initially concentrated in the
basis state |k 〉. Specifically, it defines the survival probability
to find the system at time t in the initial state |k 〉.

On increasing the interaction strength, the SF in isolated
systems undergoes a crossover from a δ-like function (per-
turbative regime) to a Breit-Wigner (BW), with a width well
described by Fermi’s golden rule. With a further increase in
the interaction, the form of the SF tends to a Gaussian [3,9,20],
a scenario that has also been observed experimentally [21].

One of the basic concepts in our approach is the so-called
energy shell, which is the energy region defined by the
projection of V onto the basis of H0 [22]. This region is the
largest one that can be occupied by an eigenstate. The partial
filling of the energy shell by an eigenstate can be associated
with the many-body localization in the energy representation,
a subject that is nowadays under intensive investigation (see,
for example, [23] and references therein). When this happens,
of course, the eigenstates cannot be treated as thermal, in the
sense that a good definition of temperature cannot be done.
Contrary to this, if a chaotic eigenstate fills the energy shell
completely, this corresponds to maximal quantum chaos, and
a proper temperature can be defined.

In the past a parameter driving the global crossover
from nonchaotic to chaotic eigenstates was proposed based
essentially on the ratio between the interaction strength and
the mean energy range spanned by the basis states effectively
coupled by the interaction V [3,4,11]. This criterion is
independent of the energy of the eigenstate. Since we are
dealing here with single eigenstates, we will generalize this
idea in order to obtain a local criterion (i.e., depending on the
eigenenergy) for such a crossover.

Each many-body eigenstate |α 〉 is characterized not only
by an “effective number” of occupied basis states Npc, i.e., a
number of principal components in the unperturbed basis, but
also by an unperturbed energy width,

δ0 = (〈
α

∣∣H 2
0

∣∣α 〉 − 〈α |H0|α 〉2)1/2. (8)

These two parameters allow us to define, for each single
eigenstate, an effective mean energy spacing, dloc = δ0/Npc,
that the perturbation strength V must overcome in order to go
beyond the perturbative regime. Accordingly, in order to have
chaotic eigenstates we require V > dloc, while for V < dloc we
can speak of a perturbative regime. In the following we will
see that the region characterized by V > dloc is the “ther-
mal” one, where an effective temperature, dependent on the
interparticle interaction, can be defined via the Bose-Einstein
distribution.

III. THE BOSE-EINSTEIN DISTRIBUTION FOR AN
INTERACTING EIGENSTATE

In order to define the temperature for each selected eigen-
state |α〉 let us consider its occupation number distribution
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(OND),

nα
s = 〈α|n̂s |α〉 =

∑
k

∣∣Cα
k

∣∣2〈k|n̂s |k〉. (9)

As one can see, the OND (9) consists of two ingredients:
the probabilities |Cα

k |2 and the occupation numbers 〈k|n̂s |k〉
related to the basis states of H0. The latter are just integer
numbers 0,1,2, . . . ,N depending on how many bosons occupy
the single-particle level s with respect to the many-body state
|k〉. If the eigenstate |α〉 of H consists of many uncorrelated
components, one can substitute |Cα

k |2 by the corresponding SF
obtained by an average either over a number of eigenstates with
close energies or inside an individual eigenstate, for example,
with the use of the “moving window” average [11]. Thus,
from the knowledge of the SF it is possible to obtain the OND
without the diagonalization of huge Hamiltonian matrices.

Having defining the temperature of a single eigenstate by
means of its corresponding OND in mind, a few relevant
questions come out. First of all, since we are dealing with
bosons, the common reference OND is the BED that is derived
for noninteracting particles in the thermodynamic limit. The
situation here is clearly different since our system has a
finite number of interacting particles. To address this question
properly we start with the basic relations∑

s

ns = N,
∑

s

εsns = E, (10)

where N is the total number of bosons and E is the energy of a
system for which the interparticle interaction is neglected. As
is known, the solution of these equations for N → ∞ leads to
the BED,

nBE
s = (eβ(εs−μ) − 1)−1. (11)

The derivation can be obtained due to only the combinatorics,
with the constants β and μ being the Lagrange multipliers [24]
(see also discussion in Ref. [25]). The meaning of β and μ as
the inverse temperature and chemical potential, respectively,
emerges when the system is connected with a heat bath.
However, we will show that one can speak of BED even if the
system is isolated; moreover, this distribution emerges on the
level of a single eigenstate of the total Hamiltonian. Inserting
(11) into (10), one can obtain both β and z = eβμ as a function
of N and E. If we further fix the number of particles N , we
obtain two functions, z(E) and β(E), as shown in Fig. 1. The
values of z and β corresponding to the energy Eα are indicated
in Fig. 1 by open circles that are obtained with the intersection
of the vertical line E = Eα with the curves z(E) and β(E). Let
us note that the BED indicated by a dashed line in Fig. 2(d)
has been obtained using exactly these values of z and β.

Now the key question is, what energy on the right-hand side
of Eq. (10) should be used for interacting bosons in order to
have, if any, the correspondence to the numerically obtained
OND [26]?

First, we start with the global correspondence between the
actual OND numerically obtained from individual eigenstates
(9) and the BED expression (11). For this we consider the
OND averaged over a number of close eigenstates in a narrow
energy window. We considered the average over a small energy
window with the only purpose being to study fluctuations in
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FIG. 1. Pictorial description of the increase of temperature for
the eigenstate in Fig. 2(d).

the next section. In any case the ONDs for single eigenstates
are shown in Fig. 6 in Appendix A.

We choose the eigenenergy Eα in two different regions,
close to the center and close to the edges of the spectrum, and,
for each of them, two different values of the interaction strength
V (see Fig. 2). Each panel of Fig. 2 shows the average values
of the ONDs, with the error bars representing one standard
deviation (fluctuations here are due to different eigenstates in a
close energy window; alternatively, one can choose one single
eigenstate and change the random interparticle potential), and
two curves. The dashed curves are those obtained by choosing
as Eα the unperturbed energy, while the solid ones are obtained
by “dressing” the energy, as shown below.
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FIG. 2. Average occupation numbers 〈nα
s 〉 for weak (V = 0.1,

top panels) and strong (V = 0.4, bottom panels) perturbation and
different energies in the middle of the energy spectrum, (a) Eα =
28.51 and (c) Eα = 25.93, and on the edges, (b) Eα = 11.27 and
(d) Eα = 6.05. Error bars indicate one standard deviation and are
obtained by averaging over 20 close eigenstates. Dashed curves
are obtained from the BED with E = Eα in Eq. (10). Solid curves
correspond to the BED with the energy Edres in Eq. (12).
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FIG. 3. Average energy shift 〈�α〉 as a function of the energy
Eα for two different values of the interaction V . Symbols stand
for numerical results, while solid lines represent the Gaussian
approximation (error bars indicate one standard deviation). The
average has been done over 20 close eigenstates. Due to the symmetry
only half of the energy spectrum (where the density of states is an
increasing function of the energy) is shown.

As one can see in Fig. 2, while for weak interaction (top
panels) the dashed lines match perfectly the numerical data,
this does not happen for strong interaction (bottom panels).
While such a failure in the case of strong interaction is not
unexpected, the good agreement in the case of weak interaction
is far from trivial since it is worth noting that the Bose-Einstein
distribution is obtained in the limit N → ∞ while here we have
only N = 6 particles.

To take into account the interparticle interaction we use the
approach suggested in Refs. [3,4]. Specifically, we substitute
the energy E = Eα in (10) with the dressed energy,

Edres = 〈α|H0|α〉 ≡ Eα + �α. (12)

Note that this energy is higher [in the region in which the
density of states (DOS) increases with energy] than the
eigenvalue Eα corresponding to the eigenstate |α 〉. This
corresponds to a temperature T dres higher than that obtained
with the substitution E → Eα . The dressed energy Edres =
Eα + �α is indicated by a vertical dashed line in Fig. 1. Since
the energy shift �α is always positive in the energy region
where the density of states increases with the energy, this
produces a lowering of both z and β, indicated in Fig. 1 as
solid circles (zdres and βdres).

Plugging the BED, Eq. (11), into Eq. (10) with the
substitution Edres → E returns the values of μ and β from
which we can write down the corresponding BED indicated
by solid curves in Fig. 2. Even if, in the case of weak interaction
(top panels), the BED is hardly distinguishable from the
“unperturbed one” for strong interaction (bottom panels), they
are very different; nevertheless, they match the numerical data
extremely well, without any fit.

The energy shifts �α can be easily calculated numerically
for each eigenstate. In Fig. 3 we plot such values, averaged over
close eigenstates for the two different perturbation strengths
V considered in Fig. 2.

It is also possible to derive an analytical expression for the
energy shift �α in Eq. (12) under not too strong assumptions.

For weak TBRI and a large number of particles, the form
of the DOS is a Gaussian [15]. Moreover, due to the trace
conservation of H , the position of the center Ec of the
perturbed spectrum is the same as that of the unperturbed
one. In this situation the variance σE of the perturbed DOS
ρ is related to the variance σ0 of the unperturbed DOS ρ0

according to the simple relation (see Appendix B, Eq. (B15)
for details)

σ 2
E = σ 2

0 + (�E)2, (13)

where

(�E)2 = (1/NH )
∑

n

∑
k �=n

H 2
nk (14)

is the average width of the SF and it can be obtained
without any diagonalization. Inserting into Eq. (12) the spectral
decomposition of H0,

H0 =
∑

k

E0
k |k〉〈k|, (15)

one has

�α =
∑

k

E0
k

∣∣Cα
k

∣∣2 − Eα 	
∫

dE(E − Eα)ρ0(E)
〈∣∣Cα

k

∣∣2〉
.

(16)

Assuming a Gaussian form also for 〈|Cα
k |2〉 peaking

around Eα , 〈∣∣Cα
k

∣∣2〉 	 exp[−(E − Eα)2/2(�E)2], (17)

and for ρ0(E),

ρ0(E) 	 exp
[−(E − Ec)2/2σ 2

0

]
, (18)

and inserting (17) and (18) into Eq. (16) with the correct
normalizations, one gets the analytical estimate for the energy
shift:

�α = (�E)2

(�E)2 + σ 2
0

(Ec − Eα). (19)

These analytical values are shown in Fig. 3 as solid lines.
As one can see, they work very well in the center of the
energy spectrum [where the hypothesis of Gaussian local
DOS (LDOS) and DOS can be applied without appreciable
errors], while significant deviations appear at the low edge
of the spectrum, where, due to the finite number of particles
and levels, it is well known that DOS and LDOS cannot be
described by Gaussians.

The increase in temperature �T , emerging due to the
interparticle interaction, can be obtained from the definition
of thermodynamic temperature by means of the unperturbed
density of states ρ0,

β = 1

T
= d ln ρ0

dE
,

so that

T dres ≡ T + �T =
(

d ln ρ

dE

)−1

= σ 2
E

Ec − E
(20)

and, finally, from Eq. (13)

�T

T
= (�E)2

σ 2
0

. (21)

042135-4



TEMPERATURE OF A SINGLE CHAOTIC EIGENSTATE PHYSICAL REVIEW E 95, 042135 (2017)

TABLE I. Parameters for Fig. 2. Eα is the eigenenergy, and β,z are the corresponding parameters of the BED with E = Eα . Edres is the
corresponding dressed energy computed from the numerical value of �α , and βdres,zdres are the corresponding parameters of the BED with
E = Edres. �T/T is the relative temperature shift obtained from the dressed values, and (�E)2/σ 2

0 is the analytical value obtained from
Gaussian approximation.

Eα β = 1/T T z Edres = Eα + �α βdres = 1/T dres T dres zdres �T/T (�E)2/σ 2
0

V = 0.1
Fig. 2(a) 28.51 0.055 18.18 0.471 28.87 0.0525 19.05 0.464 0.048 0.031
Fig. 2(b) 11.27 0.2365 4.23 0.724 12.38 0.215 4.65 0.704 0.099
V = 0.4
Fig. 2(c) 25.93 0.0735 13.60 0.505 30.504 0.0417 23.98 0.446 0.763 0.51
Fig. 2(d) 6.05 0.434 2.30 0.873 16.59 0.156 6.41 0.637 1.787

As one can see, the relative shift in temperature turns out
to be independent of the eigenenergy Eα and dependent only
on the ratio between the variance σ 2

0 of the unperturbed DOS
and the average variance (�E)2 of the SF. Again, both can be
found without the diagonalization of H . The analytical values
of the temperature shift for the eigenstates in Fig. 2 agree fairly
well with those obtained with the use of the energy shifts from
Eq. (12) when the eigenenergy is far from the edges of the
spectrum (top panels in Fig. 2). All numerical values for the
shifts are reported for the reader’s convenience in Table I.

Let us remark that even when the assumption of a Gaussian
form of the DOS is not correct (for example, close to the

edges of the energy spectrum), the BED obtained with the
dressed energy in Eq. (12) works very well, as clearly shown
by a comparison between the solid curves and symbols in the
bottom panels of Fig. 2.

IV. FLUCTUATIONS IN THE BOSE-
EINSTEIN DISTRIBUTION

Above we have shown that, on average, the numerical
data for ns are in good agreement with the BED using
a suitable dressed energy. However, in order to claim that
statistical mechanics works on the level of individual states
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FIG. 4. Distributions of relative fluctuations �ns/ns , s = 1, . . . ,M = 11: (a) weak perturbation V = 0.1, high energy, (b) weak perturbation
V = 0.1, low energy, (c) strong perturbation V = 0.4, high energy, and (d) strong perturbation V = 0.4, low energy. Statistics have been
obtained with 103 different realizations of the random potential and by choosing different eigenstates in a small energy window in order to have
approximately 20 eigenstates for each realization of the random potential. In all of them, where it is significant (all but the yellow distributions)
we superimposed a Gaussian fit (black curve).
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FIG. 5. (a) dloc as a function of the number of principal compo-
nents Npc for each eigenstate |α 〉 and two different values of V : 0.1
(lower blue points) and 0.4 (upper red points). Dashed horizontal lines
represent dloc = V . Arrows define the critical values Ncr . (b) Average
relative fluctuations in OND 〈�ns/ns〉 vs Npc/Ncr for two different
V values as indicated in the legend. The dashed line is drawn to guide
the eye and stands for 2/

√
Npc. Average fluctuations in OND have

been obtained by averaging over 20 close eigenenergies.

one also has to check whether fluctuations are statistically
acceptable. Fluctuations can emerge by varying the eigenstates
in a small energy window or by different realizations of
the disordered interparticle potential. We have checked that
the distributions of these fluctuations are similar and can be
considered statistically equivalent.

A study of fluctuations around average values is fundamen-
tal. Indeed, looking at the error bars in Fig. 2(b), it is clear
that they can be very large, and one can wonder whether they
can be considered statistically acceptable. Large fluctuations
typically occur for eigenstates with energies close to the edges
of the spectrum or for very weak interparticle interaction.

To face the question of how relevant the fluctuations are,
we studied the distribution of the relative fluctuations

�ns

ns

≡ ns − 〈ns〉
〈ns〉

of the occupation numbers for close (in energy) eigenstates.
Results are shown in Fig. 4 for different s values, s = 1, . . . ,M

and for the four eigenstates in Fig. 2.
These data clearly indicate that for all eigenstates except

those in Fig. 2(b), whose distributions are in the top right
panels of Fig. 4, we have that (i) fluctuations are independent
of s and therefore statistically independent and (ii) they are
approximately described by Gaussians, which is a strong result
in view of the requirement of standard statistical mechanics.

Concerning the eigenstates used in Fig. 2(b), one can ob-
serve that for them one has dloc ≈ 0.2 > V = 0.1. Therefore,
applying our local criterion for thermal chaotic eigenstates
discussed above, we cannot treat them as chaotic eigenstates
(in all other cases, of course, V > dloc).

For a more quantitative analysis, for each eigenstate we
have computed the corresponding value of dloc as a function of
the number of its principal components Npc for the two values
of V considered in Fig. 2. The intersections of these points
with the horizontal lines dloc = V , shown in Fig. 5(a), define
the critical values Ncr indicated by arrows. Then, we expect
the fluctuations in the OND to be not statistically acceptable
when Npc < Ncr (V ).

To test such a conjecture we group the eigenstates in
small energy windows and calculate in each of them the
average fluctuations in OND 〈�ns/ns〉. In Fig. 5(b) we plot
such a quantity vs the renormalized number of principal
components Npc/Ncr . As one can see, for Npc < Ncr , the
average fluctuations 〈�ns/ns〉 are almost independent of Npc,
while for Npc > Ncr they decay as 1/

√
Npc [dashed line in

Fig. 5(b)]. This gives strong numerical evidence that for small
systems and far from the thermodynamic limit, the value of
Npc plays the role of an “effective” number of particles.

V. CONCLUSIONS

We have shown that the standard Bose-Einstein distribution,
known to appear for an ideal gas in the thermodynamic
limit, emerges on the level of an individual eigenstate in
an isolated system with a finite number of particles. This
happens when the interparticle interaction is strong enough
to lead to the onset of chaotic many-body eigenstates in the
basis defined by the chosen single-particle spectrum. In our
approach we gave an analytical threshold dependent on the
eigenstates energy in order to have chaotic eigenstates. For
those thermal eigenstates we computed the corresponding
occupation number distribution and verified that they can
be successfully described by a Bose-Einstein distribution
with a suitable dressed energy dependent on the interparticle
interaction. We also gave an analytical estimate for the dressed
energy well confirmed by direct numerical data.

Special attention has been paid to the fluctuations of
occupation numbers. We stress that in order to correspond
to conventional statistical mechanics, fluctuations should be
small, independent, and Gaussian. Specifically, they decrease
as the square root of the number of principal components in
chaotic eigenstates. Therefore, for finite isolated systems that
are far from the thermodynamic limit, the control parameter for
the onset of thermalization is not the number of particles but the
number Npc of principal components in chaotic eigenstates.
Our analytical findings are complemented by numerical data.
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APPENDIX A: OCCUPATION NUMBER DISTRIBUTION
FOR A SINGLE EIGENSTATE

It is important to observe that the occupation number
distribution can be obtained for a single eigenstate, as claimed
in the title. The only purpose of averaging over disorder or over
close eigenstates as done in the main text was to introduce and
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FIG. 6. Occupation numbers for a single eigenstate nα
s for

weak (V = 0.1, top panels) and strong (V = 0.4, bottom panels)
perturbation and different energies in the middle of the energy
spectrum, (a) Eα = 28.51 and (c) Eα = 25.93, and on the edges,
(b) Eα = 11.27 and (d) Eα = 6.05. Dashed curves are obtained from
the BED with E = Eα in Eq. (10). Solid curves correspond to the
BED with the energy Edres in Eq. (12).

analyze statistical errors. Examples of ONDs for four different
eigenstates for the same parameters and energy regions as
those in Fig. 2 are shown in Fig. 6.

APPENDIX B: PROPERTIES OF F FUNCTIONS AND THE
DENSITY OF STATES

Let us start with the conventions used in the definitions of
unperturbed (H0) and perturbed (H = H0 + V ) Hamiltonians,

H0|k〉 = E0
k |k〉,

H |α〉 = Eα|α〉,
(B1)

and the change of representation,

|α 〉 =
∑

k

Cα
k |k 〉. (B2)

The F function and the strength function, defined as

Fα(E) =
∑

k

∣∣Cα
k

∣∣2
δ
(
E − E0

k

)
(B3)

and

Fk(E) =
∑

α

∣∣Cα
k

∣∣2
δ(E − Eα), (B4)

satisfy many relations that are well known in the literature
(see, for instance, Ref. [11]) and reported here for the reader’s
convenience. First of all, they are both normalized,

∫
dE Fα(E) =

∫
dE Fk(E) = 1. (B5)

Introducing the total density of states (DOS),

ρ(E) =
∑

α

δ(E − Eα), (B6)

and the unperturbed one,

ρ0(E) =
∑

k

δ
(
E − E0

k

)
, (B7)

both normalized to the dimension of the Hilbert space NH ,∫
dE ρ0(E) =

∫
dE ρ0(E) = NH , (B8)

it is possible to write

Fα(E) 	 ρ0(E)
〈∣∣Cα

k

∣∣2〉
E0

k =E
, (B9)

where the average is performed over a number of unperturbed
eigenstates with energy close to E. In the same way, we have

Fk(E) 	 ρ(E)
〈∣∣Cα

k

∣∣2〉
Eα=E

, (B10)

where the average is performed over a number of eigenstates
with energy close to E. Note that instead of averaging over
a number of eigenstates, one can use the average inside
an individual eigenstate with the window moving method,
provided this eigenstate has many uncorrelated components.

The two-body random interaction potential V is assumed
to be noneffective on the diagonal, i.e.,

〈k|V |k〉 = 0.

From these simple relations we can get various results
concerning the moments of the distributions.

1. First moment of the SF

The following equalities holds:

〈E〉k =
∑

α

Eα
∣∣Cα

k

∣∣2 =
∑

α

Eα〈k|α〉〈α|k〉

= 〈k|H |k〉 = Hkk = 〈k|H0|k〉 = E0
k . (B11)

2. Second moment of the SF

(�Ek)2 =
∑

α

(Eα − 〈E〉k)2
∣∣Cα

k

∣∣2

=
∑

α

(Eα)2〈k|α〉〈α|k〉 − 〈E〉2
k

= 〈k|H 2|k〉 − (Hkk)2

=
∑

j

〈k|H |j 〉〈j |H |k〉 − (Hkk)2

=
∑
j �=k

H 2
kj . (B12)

3. First moment (center) of the perturbed and
unperturbed spectrum (DOS)

Let us define Ec as the center of the perturbed spectrum
and E0

c as the center of the unperturbed one. It is easy to see
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that in our model they coincide. Indeed,

E = Ec = 1

NH

∑
α

Eα = 1

NH

Tr[H ] = 1

NH

∑
k

〈k|H |k〉

= 1

NH

∑
k

〈k|H0|k〉 = 1

NH

∑
k

E0
k = E0

c . (B13)

4. Second moment of the DOS

E2 = 1

NH

∑
α

E2
α = 1

NH

Tr[H 2] = 1

NH

∑
k

〈k|H 2|k〉

= 1

NH

∑
k

∑
j

〈k|H |j 〉〈j |H |k〉

= 1

NH

∑
k

H 2
kk + 1

NH

∑
k

∑
j �=k

H 2
kj . (B14)

5. Relation between the second moments of the DOS

Let us define σ 2
E and σ 2

0 as the variances of the perturbed
and unperturbed DOS. Then, the following relation holds:

σ 2
E = E2 − E2 = 1

NH

∑
k

H 2
kk + 1

NH

∑
k

∑
j �=k

H 2
kj

− (
E0

c

)2 = 1

NH

∑
k

(
E0

k

)2 −
(

1

NH

∑
k

E0
k

)2

+ 1

NH

∑
j �=k

(�Ek)2 ≡ σ 2
0 + (�E)2, (B15)

where in the latter equality we have defined (�E)2 as the
average of the variances of all SF (each SF is defined for any
given basis state |k〉).
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