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We investigate the validity of the non-Hermitian Hamiltonian approach in describing quantum transport in
disordered tight-binding networks connected to external environments, acting as sinks. Usually, non-Hermitian
terms are added, on a phenomenological basis, to such networks to summarize the effects of the coupling to the
sinks. Here, we consider a paradigmatic model of open quantum network for which we derive a non-Hermitian
effective model, discussing its limit of validity by a comparison with the analysis of the full Hermitian model.
Specifically, we consider a ring of sites connected to a central one-dimensional lead. The lead acts as a sink that
absorbs the excitation initially present in the ring. The coupling strength to the lead controls the opening of the
ring system. This model has been widely discussed in literature in the context of light-harvesting systems. We
analyze the effectiveness of the non-Hermitian description both in absence and in presence of static disorder on
the ring. In both cases, the non-Hermitian model is valid when the energy range determined by the eigenvalues
of the ring Hamiltonian is smaller than the energy band in the lead. Under such condition, we show that results
about the interplay of opening and disorder, previously obtained within the non-Hermitian Hamiltonian approach,
remain valid when the full Hermitian model in presence of disorder is considered. The results of our analysis can
be extended to generic networks with sinks, leading to the conclusion that the non-Hermitian approach is valid
when the energy dependence of the coupling to the external environments is sufficiently smooth in the energy
range spanned by the eigenstates of the network.
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I. INTRODUCTION

Open quantum systems are nowadays at the center of many
research fields in physics, ranging from quantum computing to
transport in nano- and mesoscale solid state systems as well as
biological aggregates. In particular, charge/excitation transport
in the quantum coherent regime can be considered one of the
central subjects in modern solid state physics [1,2]. Transport
properties depend strongly on the degree of openness of the
system. In important applications, the effect of the opening
is large, and cannot be treated perturbatively. The analysis
of open quantum systems beyond the perturbative regime
is often difficult due to the presence of infinitely many degrees
of freedom. Thus a consistent way to take the effect of the
opening into account for arbitrary coupling strength between
the system and the external world is highly desirable.

In a typical situation, we have a discrete quantum sys-
tem coupled to an external environment characterized by
a continuum of states. Elimination of the continuum leads
to an effective non-Hermitian Hamiltonian. This approach
to open quantum systems has been shown to be a very
effective tool in dealing also with the strong coupling regime
[3–8]. The non-Hermitian Hamiltonian approach offers several
advantages: (i) it reduces an infinite dimensional problem to a
finite dimensional one; (ii) it allows to compute conductance
and the whole time evolution of the relevant subsystem;
(iii) the effects of interference between discrete states and
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the continuum, such as superradiance or Fano resonances can
be easily analyzed [9].

Tight-binding networks are often considered in literature
to model quantum transport and decay, and their coupling
with external environments, acting as sinks, is taken into
account by adding non-Hermitian terms to the Hamiltonian
[10,11]. Indeed, non-Hermitian models are more and more
used to describe trapping or loss of excitation into transport
channels of complex biological aggregates [12–14], but a
proper justification of the employed non-Hermitian model is
often overlooked.

Together with the coupling to a sink, such networks
are usually coupled to other environments, which induce
different kinds of disorder: static disorder (space-dependent)
and dynamical disorder (time-dependent). When disorder is
added to the system to take into account the effect of other
environments, the strength of the coupling to the sink is usually
assumed to be unaffected by the disorder itself.

This assumption has been used both when dealing with
dynamical disorder [15,16] and with static disorder [14,17,18].
Specifically, some of the authors of this paper have pre-
viously analyzed the interplay of opening and static disor-
der in paradigmatic models of quantum transport, such as
one-dimensional and three-dimensional tight-binding mod-
els [17,18]. Within the framework of the non-Hermitian
Hamiltonian approach, a novel cooperative regime was found
characterized by the presence of subradiant hybrid states.
Moreover, cooperative robustness to disorder has been shown
[17] to play an important role in the dynamics of quantum
systems with sinks. As a matter of fact, all of those results were
obtained assuming the coupling to the sinks to be independent
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FIG. 1. (Color online) Tight-binding model described by the
Hermitian Hamiltonian H given in Eq. (22): a ring of NR sites,
connected with nearest-neighbor coupling �, and a lead of NL sites,
connected with nearest-neighbor coupling �L. The ring sites are
equally coupled to the first lead site with tunneling amplitude �RL.

of the disorder strength, even if we expect this assumption to
fail for large disorder.

In this paper, we consider a tight-binding network com-
posed by a ringlike structure coupled to a semi-infinite lead
(Fig. 1). This model has been discussed in several publications
in literature due to its relevance to light-harvesting complexes
and to proposals of bio-engineered devices for photon sensing
[14,15,19–22]. Here, we derive a non-Hermitian Hamiltonian
able to describe the transport properties of the model. By
comparing the results of the full Hermitian model with the
results obtained with the non-Hermitian model, we want to
assess the limit of validity for the use of a non-Hermitian
Hamiltonian to model the decay properties in the presence of
a sink. We will analyze in detail the case with no disorder,
while for the case in the presence of disorder our main goal
is to give a qualitative discussion of the limit of validity of
the non-Hermitian approach and to ascertain its reliability in
reproducing the physics of the full Hermitian system, focusing
on the existence of subradiant hybrid states and cooperative
robustness to static disorder.

In Sec. II, we introduce the non-Hermitian Hamiltonian
approach to open quantum systems; in Sec. III, we present
our Hermitian model and we derive the corresponding non-
Hermitian Hamiltonian, showing, in Sec. IV, the effects of
superradiance in such a system. We then analyze the validity
and effectiveness of the non-Hermitian model in reproducing
the dynamics of the Hermitian system, in both absence (Sec. V)
and presence (Sec. VI) of diagonal disorder. In Sec. VII, we
show how our results generalize to generic networks with
sinks. A summary of the results and their implications for the
modeling of quantum sinks is given in the concluding section.

II. DERIVATION OF THE NON-HERMITIAN
HAMILTONIAN

In this section, we present a standard derivation of the non-
Hermitian effective Hamiltonian. Alternative derivations can
also be found in Refs. [3,8,23].

Let us consider a discrete quantum system A, interacting
with another system B, which represents the environment.
We assume that the subspace A is spanned by NA discrete

states |i〉, while the subsystem B represents the environment
with states |c,E〉, where c = 1, . . . ,M is a discrete quantum
number, labeling the decay channels, and E is another discrete
quantum number, representing the energy (we will take the
continuum limit of this quantum number later).

In order to derive the effective non-Hermitian Hamiltonian,
which describes the intrinsic system A, let us consider the
projectors, within the Hilbert space of the total system A + B,
on the two subsystems:

PA =
NA∑
i=1

|i〉〈i|, PB =
M∑

c=1

NB∑
E=1

|c,E〉〈c,E|. (1)

Under the orthogonality conditions 〈i|j 〉 = δi,j , 〈c,E|c′,E′〉 =
δc,c′δE−E′ , 〈i|c,E〉 = 0, we can rewrite the total Hamiltonian
of the system as

H = H0 + V =
(

HAA 0
0 HBB

)
+

(
0 HAB

HBA 0

)
, (2)

where

HAA = PAHPA, HAB = PAHPB, (3)

and similarly for the other terms.
We can now define the unperturbed propagator G0(x) =

(x − H0)−1 and the total propagator G(x) = (x − H )−1, re-
lated by the Dyson equation

G(x) = G0(x) + G0(x)V G(x),

which gives rise to the following coupled equations for GAA =
PAGPA and GBA = PBGPA:

GAA = G0
AA + G0

AAHABGBA,

GBA = G0
BBHBAGAA.

By substitution we obtain

GAA = G0
AA + G0

AAHABG0
BBHBAGAA

and, taking into account that G0
BB = (x − HBB)−1, we have

GAA(x) = 1

x − HAA − HAB
1

x−HBB
HBA

.

From this expression, we obtain an effective Hamiltonian,
which defines the propagator over the subspace A and takes
the form

Heff(x) = HAA + HAB

1

x − HBB

HBA. (4)

The effective Hamiltonian, Eq. (4), can be written in an
explicit form taking into account the orthogonality conditions
of the states in the subsystems A and B. Without loss of
generality, we assume that the total Hamiltonian is diagonal
on the subsystem B:

〈c,E|H |c′,E′〉 = Eδc,c′δE−E′

Using the projectors, Eq. (1), we have

Heff(x) =
∑
i,j

|i〉〈i|H |j 〉〈j |

+
∑
c,E

∑
i,j

|i〉〈i|H |c,E〉 1

x − E
〈c,E|H |j 〉〈j |.
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Let us now define the transition amplitudes between the
intrinsic states and the states of the environment:

Ac
i (E) = 〈i|H |c,E〉. (5)

Taking the continuum limit∑
c,E

→
∑

c

∫
ρ(E) dE

and using the identity

1

x − x0
= Pv

(
1

x − x0

)
± iπδ(x − x0),

the non-Hermitian Hamiltonian can be written as

H±
eff(x) = HAA + �(x) ∓ i

2
Q(x), (6)

where

Qij (x) = 2π
∑

c

∫
Ac

i (E)
(
Ac

j (E)
)∗

ρ(E)δ(x − E) dE

= 2π
∑

c

Ac
i (x)

(
Ac

j (x)
)∗

ρ(x)
(7)

and

�ij (x) =
∑

c

Pv
∫

Ac
i (E)

(
Ac

j (E)
)∗

ρ(E)

x − E
dE, (8)

with ρ(E) the density of states in the environment B.
The ambiguity in the sign of the last term in Eq. (6),

producing two distinct forms of the effective Hamiltonian,
comes from the fact that the propagator G0

BB , which appears
in Eq. (4), can be associated with either the forward or the
backward evolution: the minus sign gives the forward-in-time
evolution, i.e.,

θ (t − t0)U(t,t0) = − 1

2πi

∫ +∞

−∞

exp
[− i

�
x(t − t0)

]
x − H+

eff(x)
dx, (9)

while the plus sign gives the backward-in-time evolution, i.e.,

θ (t0 − t)U(t,t0) = 1

2πi

∫ +∞

−∞

exp
[− i

�
x(t − t0)

]
x − H−

eff(x)
dx. (10)

Note that U(t,t0) is the projection through PA of the full
evolution operator of the system A + B. Thus, if the initial
state of the total system has components only on the intrinsic
system A, its evolution under the operator U(t,0) in Eq. (11)
gives the projection of the wave function of the total system
over the intrinsic system.

From now on we will use the notation Heff(x) for H+
eff(x),

referring to Heff(x) as the effective Hamiltonian. To actually
compute the evolution of an initial state, it is convenient to
make use of the (x-dependent) basis of eigenstates of Heff(x).
Since Heff(x) is in general non-Hermitian, due to the presence
of the decay operator Q(x), its eigenvalues

Er (x) = Er (x) − i

2
�r (x), r = 1, . . . ,NA,

are complex, and it has left and right eigenstates

Heff(x)|r,x〉 = Er (x)|r,x〉, 〈r̃ ,x|Heff(x) = 〈r̃ ,x|Er (x),

which are biorthogonal, i.e., the identity operator is given by

1 =
∑

r

|r,x〉〈r̃ ,x|.

Note that when Heff(x) is symmetric, 〈r̃ ,x| equals the transpose
of |r,x〉, and not its Hermitian conjugate, as it happens in the
case of Hermitian Hamiltonian operators.

We observe that the decomposition of the identity given
above is correct only when the eigenstates of the Hamiltonian
form a complete set. This will be always true in the systems
considered in this paper, but it is not always the case for
non-Hermitian Hamiltonians. Indeed, the breakdown of such
a condition for parameter-dependent non-Hermitian operators
defines the so-called exceptional points in parameter space,
whose study is relevant to many physical systems [24].

Assuming now t > 0, the evolution operator on states of
the intrinsic system A can be written as

U(t,0) = i

2π

∑
r

∫ +∞

−∞

e− i
�

xt |r,x〉〈r̃ ,x|
x − Er (x) + i

2�r (x)
dx. (11)

Due to the coupling between the intrinsic system and the
environment, the total probability for an initially intrinsic state
to remain in A may not be conserved in time, this is why the
evolution operator U is, in general, nonunitary. This property
can be already gathered form Eq. (11), but it will become more
evident in the next section.

In the case [Heff(x),H−
eff(x)] = 0 (which is always true in

the case NA = 1) we can write the evolution operator in a
particularly useful form. Indeed, we can define, for any r =
1, . . . ,NA,

G±
r (x) = |r,x〉〈r̃ ,x|

x − Er (x) ± i
2�r (x)

,

and express the propagator in the form

G(x) =
∑

r

(G+
r (x) − G−

r (x))

=
∑

r

−i�r (x)|r,x〉〈r̃ ,x|
[x − Er (x)]2 + 1

4�r (x)2
,

(12)

so that the evolution operator on states of the intrinsic system
A reads

U(t,0) = 1

2π

∑
r

∫ +∞

−∞

e− i
�

xt�r (x)|r,x〉〈r̃ ,x|
[x − Er (x)]2 + 1

4�r (x)2
dx. (13)

This form of the evolution operator will be used in the next
sections.

A. Energy-independent non-Hermitian Hamiltonian

The effective non-Hermitian Hamiltonian, Eqs. (6,7,8) can
be greatly simplified if the x dependence can be neglected. In
the case of a single quantum level of energy E0, the effective
Hamiltonian becomes a complex number and we have

Heff(x) = E0 + �(x) − i

2
Q(x).

In order to see under which conditions the x dependence can
be neglected, we can analyze the expression for the evolution
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operator given in Eq. (13), where E1(x) = E0 + �(x) and
�1(x) = Q(x). If �1(x) and �(x) are smooth and slowly
varying function around x = E0, the propagator, Eq. (12), can
be well approximated around E0 by setting

�(x) = �(E0),

�1(x) = �1(E0).
(14)

With this approximation the evolution operator becomes

U(t,0) ≈ e− i
�

(E0+�(E0))t e− 1
2�

�1(E0)t .

Clearly, the range of times in which the latter will be a
good approximation for the actual evolution will depend on
how well the propagator is approximated by a Lorentzian
function even for energies distant from E0. Note that the
approximated propagator implies an exponential decay of the
unstable quantum state with a decay width

�1(E0) = 2π
∑

c

|Ac(E0)|2ρ(E0),

see Eq. (7), which corresponds to the Fermi golden rule. Hence
the problem of the validity of the energy-independent effective
Hamiltonian in the case of a single state is formally equivalent
to the problem of the validity of the exponential decay given
by the Fermi golden rule of an unstable quantum state [25–27].

When we have many levels coupled to the same continuum,
the evolution operator in a generic situation is given by
Eq. (11). The problem of obtaining an energy-independent
non-Hermitian Hamiltonian able to describe such evolution is
now more delicate since, in this case, we may have different
energies associated with the different levels. This general
problem will be treated in a subsequent publication.

On the other side, when �ij (x) and Qij (x) are smooth
and slowly varying functions of x in the whole physically
relevant energy range, determined by the eigenvalues of the
Hamiltonian of the intrinsic system, we can completely neglect
the dependence on the energy of the initial state. Under these
conditions, we can obtain an energy-independent effective
Hamiltonian by setting

�(x)ij = �(E0)ij ,

Q(x)ij = Q(E0)ij ,
(15)

where E0 is any energy lying in the relevant range. We
can thus treat also the case of many levels coupled to the
same continuum with an energy-independent non-Hermitian
Hamiltonian, which reads

Heff = HAA + � − i

2
Q. (16)

This approximation will be used in Sec. VI to analyze a system
in presence of disorder.

The energy-independent non-Hermitian Hamiltonian be-
haves as an effective Hamiltonian and allows us to compute
the time evolution of the projection of the total wave function
on the intrinsic system, see Eq. (11). Indeed, we can expand
any initial state of the intrinsic system, over the eigenstates
of the effective Hamiltonian and its time evolution can be
determined as follows:

|ψ(t)〉 = e−iHeff t/�|ψ(0)〉 =
∑

r

e−iEr t/�|r〉〈r̃|ψ(0)〉. (17)

Note that, for the case of a single particle/excitation in the
intrinsic system and zero temperature in the external envi-
ronment, the energy-independent non-Hermitian Hamiltonian
description is equivalent to the standard master equation in
Lindblad form obtained under the Born-Markov secular ap-
proximation [9]. Nevertheless, the non-Hermitian Hamiltonian
approach is computationally much more efficient because one
has to integrate only NA equations while, with the master
equation approach, one has O(N2

A) equations to deal with.

B. Superradiance

A very important phenomenon that can be easily analyzed
by means of the energy-independent effective Hamiltonian, see
Eq. (16), is superradiance. It is the cooperative effect which
produces a strong inhomogeneity in the decay rates of the states
of the intrinsic subsystem: some states, named superradiant,
display large decay rates, while the decay of some other states
is very slow, sometimes even negligible. We note that such an
effect is also known as “resonance trapping” and is present in
many physical systems such as nuclei, microwave resonators,
and optical resonators (see, e.g., Ref. [28]).

The roots of this effect lie in the interference due to the
competition of different states of the intrinsic subsystem to
decay in the same channel in the continuum. Considering
a generic situation, let us assume that we can obtain an
x-independent form of the terms Q and � of Eqs. (7) and
(8), respectively. Necessarily, the effective Q possesses a
factorized structure, since it is derived by the tensor product of
the (rectangular) transition matrices Ac

i . It thus can have only as
many nonzero eigenvalues as the number M of decay channels.
In the energy-independent approximation, � usually displays
the same factorized structure of Q, and thus [�,Q] = 0.

We must now distinguish two situations: (1) when
[HAA,Q] = 0, the eigenvalues Er of Heff are given by the sum
of those of HAA [Eq. (3)], �, and −(i/2)Q, so that we can have
at most M nonvanishing decay widths, while NA − M eigen-
states of Heff are not decaying at all. And (2) when [HAA,Q] 
=
0, we encounter an additional effect, named superradiance
transition. Indeed, the relative energy scale of the opening term
� − (i/2)Q with respect to that of the intrinsic Hamiltonian
HAA becomes important in determining how the decay width
is distributed among the eigenstates of Heff : when the opening
is weak, the eigenstates will be close to the eigenstates of
HAA and all of them will have a similar decay width; on
the other hand, when the opening is strong, the eigenstates
will approach those of � − (i/2)Q, and only M of them will
have a significant decay width. We then see a transition from
a nonsuperradiant regime (weak opening) to a superradiant
regime (strong opening). This transition is not present in case 1
above, where we are in a superradiant regime for any opening
strength. One could also consider the case [�,Q] 
= 0, but
under this condition it is not possible to predict the behavior of
the system regarding superradiance on general grounds, and
we need to look at the eigenvalues of the specific Heff at hand.

III. THE MODEL

We consider here a simple model with NR two-level
systems arranged in a ring structure and coupled to a
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common decay channel, the sink, which we model with a
one-dimensional lead. Such a ringlike structure has been
considered in several papers [14,15,19–22] as a paradigmatic
model to describe different systems, such as molecular J

aggregates [29], bioinspired devices for photon sensing [20]
and efficient light-harvesting systems [21]. In particular, it has
been often considered in the frame of exciton transport in
natural photosynthetic systems, where chlorophyll molecules
aggregate in ringlike structures around a reaction center,
representing a central core absorber, where the excitation can
be trapped [30]. Chlorophyll molecules are able to absorb
photons and can be modeled as two-level systems. Under
low light intensity, only one excitation is considered and the
molecular aggregate becomes equivalent to a tight-binding
model where one particle can hop from site to site.

We first introduce a Hermitian model to describe the decay
of excitation from the ringlike structure to the central core
absorber represented by a lead, as described in Fig. 1. Note that
also in Ref. [20] the central core absorber of the photon-sensing
device was modeled by a lead. Specifically, we consider a ring
with NR sites, connected with nearest-neighbor coupling �,
described by the tight-binding Hamiltonian

HR = �
∑
〈r,r ′〉

(|r〉〈r ′| + |r ′〉〈r|), (18)

where the sum runs over the pairs of neighboring sites. In what
follows, we will measure energies in units of cm−1 and times in
ps. This choice, common in models for molecular aggregates,
corresponds to setting 1/� = 0.06 π cm/ps.

Each site of the ring is connected, through the tunneling
amplitude �RL, to the first site of a lead, described by a linear
chain of NL resonant sites with nearest-neighbor coupling �L.
The Hamiltonian for the lead is

HL = �L

NL−1∑
j=1

(|
j 〉〈
j+1| + |
j+1〉〈
j |), (19)

and the interaction between the ring and the lead is described
by

VRL = �RL

NR∑
r=1

(|r〉〈
1| + |
1〉〈r|), (20)

so that the total Hamiltonian of the system, written on the site
basis

{|r〉,|
j 〉,r = 1, . . . ,NR,j = 1, . . . ,NL}, (21)

reads

H = HR + VRL + HL. (22)

One can imagine that, when NL is large enough, the lead
represents a good sink, in that it absorbs most of the excitation
present in the system.

A. The non-Hermitian Hamiltonian

Since our main focus is on the decay of the excitation from
the ring and not on its dynamics in the lead, we will now
derive an effective Hamiltonian for the subsystem formed by
the ring, summarizing into non-Hermitian terms the effects of

the subsystem represented by the lead. In this derivation, we
will follow the procedure described in Sec. II.

The eigenvalues of the lead Hamiltonian are given by

Eq = −2�L cos kqa, q = 1, . . . ,NL, (23)

where a is the distance between adjacent sites and the wave
number is

kq = πq

a(NL + 1)
.

The components on the site |
j 〉 of the lead eigenstates read

〈
j |ψq〉 =
√

2

NL + 1
sin kqja. (24)

We perform now the continuum limit taking NL → ∞. The
discrete wave number kq becomes a continuous parameter
k ∈ (0,π/a). We obtain from Eq. (23),

E(k) = −2�L cos ka (25)

and, recalling that

sin ka =
√

1 − E(k)2

4�2
L

,

we can derive the density of states ρ(E) = dk/dE as

ρ(E) = 1

2π�L

1√
1 − (E/2�L)2

.

Moreover, the eigenstates in the continuum are given by

〈
j |ψ(E)〉 =
√

2 sin kja,

with E given by Eq. (25), and their components on the first
lead site (j = 1) read

〈
1|ψ(E)〉 =
√

2

√
1 − E2

4�2
L

.

We can now compute the matrix elements connecting
the site r of the ring with the eigenstates of the lead with
energy E:

Ar (E) = 〈r|H |
1〉〈
1|ψ(E)〉
(26)

= �RL

√
2
√

1 − (E/2�L)2.

Computing now the coupling terms

Ar (E)Ar ′(E)∗ρ(E) = �2
RL

π�L

√
1 − (E/2�L)2, (27)

we define the transition matrix Q(x), see Eq. (7), by

Qrr ′ (x) =
{

γ
√

1 − x2

4�2
L

for x ∈ [−2�L,2�L],

0 otherwise,
(28)

where we introduced the opening strength

γ = 2�2
RL

�L

. (29)
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By using Eq. (27), we can also derive the expression for the
matrix �(x), see Eq. (8), as

�rr ′ (x) = γ

2π
Pv

∫ 2�L

−2�L

√
1 − (E/2�L)2

x − E
dE, (30)

thus obtaining the effective Hamiltonian

Heff(x) = HR + �(x) − i

2
Q(x). (31)

Note that the matrix elements Qrr ′(x) and �rr ′ (x) do
not depend on r or r ′. This fact implies that they commute
and they both have only one nonzero eigenvalue. The state
corresponding to that eigenvalue is the fully symmetric state

|S〉 = 1√
NR

∑
r

|r〉, (32)

which is also an eigenstate of HR , corresponding to the
maximum energy 2�. The remaining NR − 1 eigenstates of
Q(x) and �(x) are degenerate and can always (i.e., for any
x) be chosen to match those of HR orthogonal to |S〉. For this
reason, Q(x) and �(x) commute with HR .

The only nonzero eigenvalue of Q(x) is given by

�sr(x) =
{

NRγ
√

1 − x2

4�2
L

for x ∈ [−2�L,2�L],

0 otherwise,
(33)

and the only nonzero eigenvalue of �(x) is

�sr(x) = γNRPv
∫ 2�L

−2�L

√
1 − E2/4�2

L

x − E
dE. (34)

From the foregoing facts, we obtain the important con-
sequence that we can diagonalize the effective Hamiltonian
Heff(x) on the x-independent basis of eigenstates of HR . The
only eigenvalue of the intrinsic system (the ring) which is
modified by the opening is

Esr = 2� + �sr(x) − i

2
�sr(x),

while the others are

Er = Er = 2� cos
2πr

NR

, for r = 1, . . . ,NR − 1,

which coincide with the eigenvalues of HR [17].
Remarkably, we are in the peculiar situation in which

only one ring state [|S〉, Eq. (32)] is coupled to the lead,
and the number of relevant degrees of freedom, as far as
decay properties are concerned, may look already dramatically
reduced to 1. Nevertheless, the dependency on x of �sr and �sr,
keeps the actual number of degrees of freedom infinite.

The time-evolution operator for the sole ring state, |S〉,
which is coupled to the lead is given by

US(t,0) = 1

2π

∫ +2�L

−2�L

e− i
�

xt�sr(x)

[x − 2� − �sr(x)]2 + 1
4�sr(x)2

dx,

(35)

while the ring states which are orthogonal to |S〉 are effectively
decoupled from the lead. For those states, the opening term

FIG. 2. (Color online) Tight-binding model described by the
effective Hamiltonian Heff given in Eq. (38): the NR resonant sites
are coupled with nearest-neighbor tunneling amplitude �. Moreover,
they are equally open towards a common decay channel with opening
strength γ .

in the effective Hamiltonian vanishes, and it is trivially, but
exactly, x-independent: those states will never decay.

To complete the wanted dimensional reduction, we then
need to derive an x-independent (or energy-independent)
approximation of Heff(x), Eq. (31). Now, if we let �L → ∞
and �RL → ∞ keeping γ fixed (wide-band limit), we clearly
obtain an exact energy-independence with

�sr(x) → 0 and �sr(x) → γNR. (36)

With those assumptions we get

US(t,0) = exp

(
−2�i

�
t − γNR

2�
t

)
, (37)

and the effective energy-independent non-Hermitian Hamilto-
nian describing the evolution of the intrinsic system, the ring,
becomes

Heff = HR − i
γ

2
O, (38)

where O is a full matrix with all entries equal to 1, and the
components of Heff on the ring-site basis read

(Heff)rr ′ = (HR)rr ′ − i
γ

2
.

Accordingly, the evolution operator on the whole intrinsic
subspace is given by

U(t,0) = e−iHeff t/�. (39)

In summary, the effective non-Hermitian model, depicted
in Fig. 2, is given by an open ring of NR resonant sites
equally coupled, with strength γ , to a common decay channel,
in which the excitation can be lost. We will analyze in
Sec. V below the limit of validity of the energy-independent
non-Hermitian Hamiltonian of Eq. (38). Note that the non-
Hermitian Hamiltonian just derived contains, together with
the Hamiltonian of the closed ring HR , another term O,
representing the decay matrix. Since the matrix O is a full
matrix, it represents a long-range hopping between the sites of
the ring, mediated by the coupling of the sites of the ring to the
common decay channel in the lead. This long-range hopping
will be relevant to understand the interplay of opening and
disorder discussed in Sec. VI.

IV. SUPERRADIANCE IN TRANSPORT

The ring subsystem is, for any γ 
= 0, in a superradiant
regime, with a single superradiant state |S〉, Eq. (32), absorbing
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all the decay width γNR , and NR − 1 subradiant states with
vanishing decay widths. Thus our tight-binding model offers a
paradigmatic realization of case 1 of Sec. II B, showing that the
symmetry of the coupling between each ring site and the sink
is responsible for the effective perfect segregation of the decay
widths. Moreover, the superradiance transition introduced in
case 2 of Sec. II B plays a fundamental role in determining
the dynamics of our system when static disorder is added, and
Sec. VI is devoted to the analysis of such effect in both the
Hermitian and the non-Hermitian models introduced above.

Here we consider the effects of superradiance on the decay
of states which are initially excited on the ring, showing that
the non-Hermitian model correctly reproduces the dynamics
of the full Hermitian system. Given an initial ring state |ψ0〉,
we consider the survival probability

P (t) =
NR∑
r=1

|〈r|ψ(t)〉|2, (40)

computing the time evolution in both the Hermitian model,
Eq. (22),

|ψH (t)〉 = e−iH t/�|ψ0〉, (41)

and the non-Hermitian one, Eq. (38),

|ψHeff (t)〉 = e−iHeff t/�|ψ0〉. (42)

In Fig. 3, we compare the P (t) obtained with the two models
for the superradiant initial state of Eq. (32), varying the system
size as NR = 1,2,10 (black, red, and blue data, respectively).
The agreement between the Hermitian model (circles) and the
non-Hermitian one (curves) is excellent. Moreover, the decay

FIG. 3. (Color online) Survival probability P (t) vs time t . Re-
sults obtained with the Hermitian model, Eq. (22), (symbols), are
compared with the results obtained with the non-Hermitian model,
Eq. (38), (curves), for different values of NR . Circles represents data
obtained starting from the fully symmetric superradiant state |S〉 of
Eq. (32), while crosses refer to the antisymmetric state of Eq. (43),
which is subradiant. Values of the parameters are � = 1, �RL = 10,
�L = 100, γ = 2, and NL = 1000.

width, given by

NR2�2
RL

�L

= NRγ,

increases well above the single-site decay rate γ as NR is
increased, signaling the presence of cooperative effects in the
dynamics.

The same excellent agreement between the Hermitian
model (green crosses) and the non-Hermitian one (green curve)
is found in the P (t) computed for the initial state

|AS〉 = 1√
NR

∑
r

(−1)r |r〉, (43)

which is remarkably different from the one computed for
|ψ0〉 = |S〉. Indeed, as anticipated above by analyzing the
non-Hermitian model, we are in a superradiant regime. The
state |AS〉 is a subradiant eigenstate of Heff with vanishing
decay width, and then its survival probability is constantly
equal to 1. This supprression of decay, due to interference
effects, is somehow surprising if one consider that all the
sites are coupled to a semi-infinite lead and nevertheless the
excitation never leaves the system.

It is important to stress that the super/subradiant dynamics,
predicted on the basis of the reduced non-Hermitian system,
faithfully reproduces the Hermitian evolution, at least up to
the times shown in the figure. For larger times or for very short
times the behavior of the two models will depart from each
other, due to the fact that, in our simulations, both �L and NL

are finite. In Sec. V, we will analyze in detail the critical times
up to which the agreement persists.

V. LIMIT OF VALIDITY OF THE NON-HERMITIAN
MODEL: NONEXPONENTIAL DECAY

The non-Hermitian Hamiltonian, Eq. (38), constitutes a
great simplification of the full Hermitian problem, since it
eliminates the infinite number of degrees of freedom of
the lead. As it was shown in the previous sections, the
non-Hermitian Hamiltonian becomes exact for infinite length
and infinite energy band in the lead.

In this section, we want to clarify the effect of �L and NL

being finite on the validity of the non-Hermitian approach.
We will restrict our attention to the survival probability P (t)
computed for the superradiant initial state |S〉 of Eq. (32), for
which the non-Hermitian Hamiltonian predicts an exponential
decay with a decay width given by NRγ . For all the other
initial states, orthogonal to the state |S〉, the non-Hermitian
Hamiltonian predicts that they are subradiant and do not
decay at all. Since we have only one level, |S〉, coupled to
the lead, the problem of the validity of the non-Hermitian
Hamiltonian approach is formally equivalent to the validity of
the exponential decay, given by the Fermi golden rule, of the
survival probability of a single unstable quantum state coupled
with a continuum of states [25–27,31]. Also in our case we
will show that the exponential behavior is typically valid for
intermediate times, while for both short and long times the
decay is not exponential.
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A. Finite-size effects

For finite lead length the decay of the excitation from the
ring will not be irreversible, since the excitation can bounce
back at the end of the lead, inducing a revival of the survival
probability. Thus, we can expect deviations of the Hermitian
evolution from the exponential decay due to the reflection of
the wave packet at the end of the lead. This bouncing effect
is always present in any finite-size sink and it is known in
literature as mesoscopic echo [27].

We can analytically estimate the bouncing time tB assuming
that the excitation, after leaving the ring, goes through the
lead with a certain group velocity vg , and bounces back once
reached the end of the lead.

We can describe the eigenstates of the lead as plane waves
[see Eq. (24)]

〈
j |ψq〉 ∝ sin kqja, j = 1, . . . ,NL, (44)

with wave numbers

kq = πq

a(NL + 1)
, kq ∈ (0,π/a). (45)

From this point of view, a superposition of lead eigenstates
forms a wave packet. The group velocity of this wave packet
is given by

vg = ∂ω(k)

∂k

∣∣∣∣
k

= 1

�

∂E(k)

∂k

∣∣∣∣
k

, (46)

where k is the mean wave number of the waves that form
the wave packet. Using the wave numbers of the eigenstates
defined above, we can write the energies of the lead, Eq. (23),
as

E(kq) = −2�L cos kqa, (47)

so that the group velocity becomes

vg = 2�La

�
sin ka. (48)

The excitation has to go through the entire lead twice before
reaching again the starting point. From Eq. (48), we see that the
maximum velocity of a wave packet is vg = 2�La/�. Hence,
we can expect the agreement between the Hermitian evolution
and the non-Hermitian one to persist up to the time

tB = 2aNL

vg

= �NL

�L

. (49)

In order to check our estimate for tB , in Fig. 4 we compare
the superradiant decay exp(−NRγ t), produced by the non-
Hermitian model (green curve), with the Hermitian evolution
computed for different values of the lead size NL. As NL

increases, the agreement between the Hermitian and the non-
Hermitian evolution persists up to a critical time after which
we have deviations from the exponential decay and a revival of
the survival probability. For small values of NL, the agreement
time increases linearly with NL and it is well estimated by
the values of tB , see vertical arrows. On the other side, for
larger values of NL, the agreement time becomes independent
of the length of the lead. This suggests that a different effect,
see discussion below, causes the departure of P (t) from the
exponential decay.

FIG. 4. (Color online) The survival probability P (t) computed
starting from the superradiant state of Eq. (32) is plotted vs time.
The analytic decay exp(−NRγ t) (green curve), obtained from the
non-Hermitian model with γ given by Eq. (38), is compared with
the data obtained from the Hermitian model with NR = 10, � = 1,
�RL = 10, and �L = 100 for different values of NL. Vertical arrows
mark the values of tB given by Eq. (49) for the corresponding values
of NL.

B. Finite-bandwidth effects: � � �L

From Fig. 4, we notice that when we increase NL above
a certain value, the agreement time does not improve, even if
the bouncing time increases. Indeed, the large-size regime is
characterized by an NL-independent agreement time, marking
the transition from the superradiant decay to a much slower
one. The origin of this brake in the decay is very general and
it is due to the presence of a finite energy band in the lead,
whose bandwidth equals 4�L, see discussion in Ref. [25].

Indeed from Eq. (35) we see that the time evolution of
the superradiant state is given by the Fourier transform of the
function

L(x) = 1

π

�sr(x)/2

[x − 2� − �sr(x)]2 + 1
4�sr(x)2

. (50)

In the limit �L → ∞, �sr, and �sr do not depend on x (see
discussion in Sec. III). Moreover, the limits of integration in
Eq. (35) go to infinity. Thus, in this limit, the time evolution of
the superradiant state is the Fourier transform of a Lorentzian
function, which gives an exponential decay. On the other side,
for finite bandwidth in the lead, we can expect deviations from
the exponential decay due to two reasons: (i) the Lorentzian
function is now distorted due the fact that both �sr and �sr

depend on x and (ii) the limits of integration do not go to
infinity anymore.

In this section, we will consider the situation in which the
energy range of the ring is much smaller than the energy band in
the lead, so that the transition amplitude Ar (E) and the density
of states ρ(E), see Eq. (27), are very smooth and slowly varying
function of the energy in the whole energy range of the ring.
We are thus allowed to set the width �sr(x) = �sr(0) = NRγ ,
see Eq. (33), and �sr(x) = �sr(0) = 0, see Eq. (34). For this
reason, our results will not depend on the energy 2� of the
initial state |S〉 and we can use the approximation � ≈ 0. This
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regime is characterized by the following conditions:

� � �L, �sr = NRγ � 4�L. (51)

In Appendix A, using the conditions in Eq. (51), we
show that the function L(x) is well approximated by a
Lorentzian function. In such a case, the main deviations from
the exponential decay are due solely to the truncation of the
function L(x) outside the energy band of the lead.

Specifically, in Appendix A, we show that the decay of P (t)
is exponential between two time-scales t0 and tS and we have:

P (t) ≈

⎧⎪⎪⎨⎪⎪⎩
1 − NR�2

RL

�2 t2 for t < t0,

e−�srt/� for t0 < t < tS,

const./t3 for t > tS.

(52)

From Eq. (52), we see that the decay is initially quadratic in
time, as predicted by perturbation theory, then it is exponential
with a decay width �sr = NRγ given by the Fermi golden rule,
and eventually it decays as a power law.

The transition from quadratic to exponential decay occurs
at a time t0 given by

t0 = �

2�L

, (53)

which has been derived in Appendix A and, with a more
heuristic approach, in Appendix B.

The quadratic initial decay given by the full Hermitian
model is shown in Fig. 5 (symbols) for different values of �L.
In the same figure, the short-time anlytic estimate (curves)
given in Eq. (52) is shown to be a good estimate of the initial
behavior of the Hermitian system up to the time t0, marked
with arrows in Fig. 5.

The power-law decay P (t) ∝ t−3 for t > tS is in agreement
with numerical results, see dashed line in Fig. 4. The critical
time tS for which we have the transition from the exponential

FIG. 5. (Color online) Evolution of the survival probability P (t),
computed starting form the state |S〉, Eq. (32), is plotted vs time t

for different values of �L. The evolution of the Hermitian model
(symbols) is well approximated by the parabolic decay (full curves)
of Eq. (52) for times shorter than t0 = �/2�L (vertical arrows).
Parameters are � = 1, NR = 10, NL = 100, and �RL = √

�L so
that we keep the opening γ = 2 fixed.

FIG. 6. (Color online) The ratio between the time tS at which the
decay of the survival probability P (t), computed with the Hermitian
evolution of |S〉, departs from the exponential decay predicted by
the non-Hermitian model and the characteristic decay time τsr =
�/�sr is plotted against the ratio 4�L/�sr. Data are obtained keeping
�L = �2

RL and NR = 10, so that the decay rate γ = 2 is fixed. We
considered a fixed value of � = 1 (circles). The logarithmic scaling
predicted in Eq. (54) is apparent and it has been highlighted by means
of the dotted curve.

decay to the power-law decay has also been derived in
Appendix A and we have

tS ∝ �

�sr
ln

4�L

�sr
. (54)

For the exponential decay to be a good approximation on
a significant time range, we need tS to be several times
the mean life-time τsr = �/�sr. This can be achieved only
if the logarithmic term in Eq. (54) is large enough. In Fig. 6,
the logarithmic dependence of tS on �L is shown to agree with
numerical results. We also observe that both the finite-size and
finite-bandwidth effects disappear in the thermodynamic limit
(NL → ∞, �L → ∞, ρ(E) = 1/2π ) considered in Sec. III
during the derivation of Heff , since both tB and tS grow to
infinity, while t0 goes to zero.

C. Finite-bandwidth effects: � ∼ �L

Here, we analyze the situation in which the energy range of
the ring can be comparable with the energy band of the lead.
Specifically, we analyze what happens if � and �sr are not
small compared to �L, so that the conditions in Eq. (51) are
no longer satisfied.

In Fig. 7, we show the survival probability starting from
the state |S〉 for different values of the ratio �/�L and fixed
�sr. We compare the exact results with the results given by the
non-Hermitian model under the conditions given in Eq. (51).
In the range �/�L � 1/4 there is a very good agreement
(compare dashed line in Fig. 7) with numerical results, red
solid curve). As we increase the ratio �/�L, the exponential
decay is still valid in a significant time range, but the decay
width is different. According to the discussion in Sec. II A,
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FIG. 7. (Color online) Survival probability P (t), computed start-
ing from the superradiant state |S〉 Eq. (32), is plotted vs time
t , for different ratios �/�L. The results obtained with the full
Hermitian model (solid curves) are compared with the exponential
decay obtained setting �sr(0) = NRγ (dashed curve). Dotted lines
indicate the exponential decays with decay width given by Eq. (55).
Data shown refer to the case NR = 10, NL = 1000, �L = 200, γ = 2,
and different values of �.

since � is not small if compared to �L, we should build our
non-Hermitian Hamiltonian by evaluating �sr(x) and �sr(x)
at the energy E0 = 2�, so that decay width of the survival
probability can be predicted by evaluating �sr(x) at the energy
2� of the initial state:

�sr(2�) = NRγ

√
1 −

(
2�

2�L

)2

, (55)

which is deduced by the actual form of �sr(x) given in
Eq. (33). We plotted such exponential decays as dotted lines
in Fig. 7. Note that the non-Hermitian Hamiltonian derived in
the previous Section was obtained by evaluating �sr(x) and
�sr(x) at the energy E0 = 0.

When 2� + �sr(2�)/2 � 2�L we have deviations also
from the exponential decay obtained by employing the width
in Eq. (55). Notice also that as soon as the energy of the initial
state is outside the energy band of the lead the decay is strongly
suppressed (see data corresponding to �/�L = 1.05). We will
see, in the next section, that the strong suppression of decay
when the energy of the initial state lies outside the energy band
of the lead will be crucial in understanding the limit of validity
of our effective Hamiltonian approximation in presence of
disorder.

In our model, we have only one state, with energy 2�,
coupled to the continuum of states in the lead. Even if the
non-Hermitian Hamiltonian model obtained by evaluating
�sr(x) and �sr(x) at the energy E0 = 2� would be valid
in a larger range of parameters, that approximation is not
readily extendable to a situation in presence of disorder, which
will be considered in the following sections. Indeed, in this
case, we do not have a single level coupled to the lead, but
many levels, each with its own energy. For this reason, we
are mainly interested in comparing the full dynamics with
the non-Hermitian Hamiltonian model obtained by evaluating
�sr(x) and �sr(x) at the energy E0 = 0, which is valid when the

FIG. 8. (Color online) Survival probability P (t), computed start-
ing from the superradiant state |S〉 Eq. (32), is plotted vs the rescaled
time t∗ = �srt/� = NRγ t/� time, for different values of the ratio
�sr over the energy bandwidth in the lead 4�L. The results obtained
with the full Hermitian model (solid curves) are compared with the
result predicted by the non-Hermitian model (dashed curve). Data
shown refer to the case NR = 10, � = 1, NL = 1000, �L = 100,
and different values of �RL.

dependence on the energy of the initial state can be neglected
and thus it can be easily used also in presence of disorder.

Note that all of the exponential decays leave place to a
power-law decay above a critical time, which we estimated in
the previous section only in the case �/�L � 1. Here, we will
not discuss how this transition time is modified as we increase
the ratio �/�L, since in this case the deviation from non-
Hermitian Hamiltonian model obtained by evaluating �sr(x)
and �sr(x) at the energy E0 = 0, occurs for all times.

In Fig. 8, we show the survival probability starting from
the state |S〉 for different values of the ratio �sr/4�L and for
fixed energy of the initial state in the regime �/�L � 1. In
this case, deviations from the exponential decay predicted by
the non-Hermitian Hamiltonian start already when �sr/4�L =
0.1, thus showing that the agreement between the Hermitian
and the non-Hermitian model is very sensitive to the decay
width of the initial state. The strong oscillations that can be
seen in Fig. 8 are due to the fact that, for large �sr, the coupling
�RL between the ring and the first lead site is large. Our results
show that, for the non-Hermitian Hamiltonian approach to be
effective, the coupling �RL between the ring and the lead does
not need to be small with respect to the characteristic energy
scale � of the ring, but only with respect to the characteristic
energy scale �L of the lead.

VI. THE EFFECTS OF STATIC DISORDER

In this section, we aim at studying the effectiveness of
the non-Hermitian Hamiltonian approach in describing the
effects of static diagonal disorder on the transport properties
of the system under consideration. Note that we add disorder
only in the ring, leaving the lead unchanged. Such a disorder
is modeled by position-dependent, but time-independent,
fluctuations of the ring site energies, that is, we added to the
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ring Hamiltonian HR , Eq. (18), the term

D =
NR∑
r=1

εr |r〉〈r|, (56)

where εr are independent random variables uniformly dis-
tributed on [−W/2,W/2], and W represents the disorder
strength.

It is well known that, in one-dimensional systems with
short-range interactions [32], static diagonal disorder induces
Anderson localization: the eigenstates of the system become
exponentially localized. The critical disorder strength in one-
dimensional aggregates for such a localization to occur is given
by

Wloc ≈ 100√
N

, (57)

where N is the system size [17].
To understand the effects of disorder on the excitation

transport from the ring into the lead, we can make the following
considerations: since disorder destroys the perfect symmetry
of the ring, which produces zero decay widths of the subradiant
states, it will decrease the decay width of the superradiant state,
while it will increase the decay widths of the subradiant states.
Thus, in the presence of disorder, we do not have only one
state coupled to the lead as in the previous section, but we
have a genuine many-level problem. Note that opening and
disorder have competing effects, since the opening induces a
long-range hopping among the sites of the ring, as it is clearly
seen from the structure of the full matrix O in Eq. (38), which
can be expected to contrast the localization effects of disorder.

The nontrivial competition between opening and disorder
has been analyzed in Refs. [17,18], within the framework of
the non-Hermitian Hamiltonian approach to open quantum
systems. It was there shown that, upon increasing the disorder
strength, the decay widths of the subradiant and superradiant
states become the same, and equal to γ for W > Wsr, where
Wsr represents the critical disorder strength above which
superradiance is quenched.

The analysis was performed assuming the coupling γ to the
continuum to be independent of the disorder strength. Such an
assumption is often used in literature and greatly simplifies the
calculations. On the other side, one can expect the presence
of diagonal disorder to affect the outcome of the reduction
procedure leading to Heff , Eq. (38). For instance, the coupling
to the continuum will in general depend on the disorder
strength. In order to understand this point, one can consider
only one site coupled to a lead with an energy bandwidth of
4�L. If we assume the opening strength to the lead to be
independent of disorder, the non-Hermitian Hamiltonian of
this system reads Heff = E0 + ε0 − iγ /2, which implies that
the survival probability decays exponentially as e−γ t/� for any
value of the disorder strength W . Clearly, this cannot be true
when W � 4�L, since in that case the probability of the initial
state to be outside the energy band of the lead will be large
and the decay will be consequently suppressed, as discussed
in Sec. V C.

Even in the presence of disorder, the effective non-
Hermitian Hamiltonian can be built following the procedure

presented in Sec. III A, and reads

Heff(x) = HR + D + �(x) − i

2
Q(x), (58)

with Q(x) and �(x) given by Eq. (28) and Eq. (30), respec-
tively. It is clear from that expression that, in the wide-band
limit �L → ∞ (with γ fixed), the non-Hermitian Hamiltonian
for the disordered ring becomes energy-independent and can
be written as

Heff = HR + D − i
γ

2
O, (59)

where O is a full matrix with all entries equal to 1. Note that
this expression coincides with the value for x = 0 of Heff in
Eq. (58).

Clearly, the foregoing energy-independent Heff is exact
solely in the infinite-bandwidth limit, while, for any finite
bandwidth in the lead, it will be a good approximation of the
true dynamics only for a disorder strength W sufficiently small
if compared to the lead bandwidth, and even in that case only
in a certain time window. The problem of determining such
ranges of validity is very complicated, since we are dealing
with a many-level system and the considerations used in the
previous sections cannot be used blindly. A discussion of this
problem will be given in the next section.

The main purpose of this section is to see whether, for
a sufficiently large (but finite) bandwidth in the lead, the
important effects, found in Refs. [17,18], are indeed present
in the full Hermitian model considered in this paper. The
two main findings of Refs. [17,18] can be summarized as
follows. (i) Cooperative robustness to disorder. For large
enough opening strength, the critical disorder Wsr needed
to quench superradiance increases linearly with the system
size. (ii) Subradiant hybrid regime. In the superradiant regime,
the response of the superradiant and subradiant subspaces to
disorder is very different. While superradiant states display
robustness to disorder by remaining extended up to Wsr, sub-
radiant states show strong signatures of localization. Indeed,
they have hybrid features displaying both an exponentially
localized peak and a uniform delocalized plateau.

A. Comparison between Hermitian and non-Hermitian
models in presence of disorder

To assess the effectiveness of the non-Hermitian descrip-
tion, under the assumption that the coupling to the continuum
is independent of disorder, we will first study the survival
probability P (t) of finding the excitation on the ring at time
t , comparing both the results given by the Hermitian and the
non-Hermitian model in presence of disorder.

We considered a generic initial state generated as a random
superposition of the ring eigenstates. Since most of the
eigenstates are, for sufficiently small disorder, subradiant,
a random initial state will have mainly components on the
subradiant subspace, so that we can expect that disorder
will initially increase the transport efficiency. For very large
disorder, the non-Hermitian model predicts an exponential
decay of the survival probability P (t) = e−γ t/�, while we can
expect a much slower decay from the full Hermitian model.

The average P (t) computed for different values of W/4�L

is shown in Fig. 9. We observe that, in agreement with the
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FIG. 9. (Color online) Average survival probability P (t), starting
from a randomly generated ring state, computed for different values of
the disorder strength W . A perfect agreement between the Hermitian
model (symbols) and the non-Hermitian one (curves) appears, except
for the largest considered value, W/4�L = 2.5 (blue), in which case
the prediction of the non-Hermitian model (curve) is remarkably
different from the Hermitian one (circles). As a dashed curve, we
plotted the exponential decay e−γ t/� corresponding to the independent
sites limit of the non-Hermitian model. Parameters are NR = 10,
� = 1, �RL = 10, �L = 100, and NL = 250.

foregoing discussion, when W/4�L is large, the behavior of
the non-Hermitian model departs from that of the Hermitian
system for all times. Indeed, while the decay of P (t) in the
non-Hermitian case is faster and faster as disorder increases,
approaching the limiting decay rate γ /�, for the Hermitian
case the decay has a nonmonotone behavior with the disorder
strength, since it increases for small disorder and it is strongly
suppressed for large disorder.

On the other hand, we can see that, for W/4�L small, our
non-Hermitian model reproduces the Hermitian dynamics in
the time window shown in the figure. For any finite bandwidth,
we expect a departure from the non-Hermitian description for
very small times and very large times. Specifically, the time
t0 up to which we have a quadratic decay, can be estimated
also in the many-level case, see Appendix B, where we show
that t0 is again given by Eq. (53). On the other side, the time

tS above which we have a departure from the non-Hermitian
Hamiltonian decay is much more difficult to estimate in the
many-level case. Indeed, the departure from the exponential
decay has been interpreted in Ref. [27] as a consequence of the
fact that, for finite bandwidth in the lead, there is a finite return
probability from the lead to the initial state: the transition
from exponential to power-law occurs when the probability to
be in the inital state and the return probability are comparable.
In presence of many levels, the return probability will not
only repopulate the inital state, but also all the other states
connected to the lead. For this reason, the estimation of tS in
the many-level case is a delicate issue.

The rigorous analysis of this problem will be the subject of
a future publication, here we just stress that, as the bandwidth
in the lead goes to infinity, we have that t0 goes to zero and
tS grows to infinity. To illustrate this point we analyzed the
survival probability P (t) starting from the exact eigenstates
of the effective Hamiltonian of Eq. (59). The dynamics
determined by the non-Hermitian model gives an exponential
decay of P (t) with a decay width determined by the imaginary
part of the complex eigenvalue corresponding to the initial
state. In Fig. 10, we compare the non-Hermitian evolution
with the Hermitian one obtained from the same initial states
as we vary the bandwidth in the lead. In the left panel, we
show the P (t) computed starting from the state with the largest
width (superradiant), while in the right panel we show the P (t)
computed starting from the state with the second-largest width
(subradiant). In both cases, the agreement time tS between the
two models increases as we increase the bandwidth in the lead.

Most importantly, as we decrease the ratio W/4�L this
time window goes to infinity (see Fig. 10) independently of
the strength of the disorder with respect to the energy scale of
the intrinsic system (measured in our case by the ratio W/4�).

FIG. 10. (Color online) Survival probability P (t) computed
starting from the state with the largest width (left panel) and starting
from the state with the second-largest width (right panel) for different
values of the coupling �L within the lead. A good agreement between
the Hermitian model (symbols) and the non-Hermitian one (curves)
is present up to a critical time tS which increases upon increasing the
energy bandwidth (4�L) in the lead. Parameters are NR = 4, � = 1,
γ = 2, NL = 4000, and the disorder strength is given by W = 1.
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On the contrary, for any finite bandwidth, as we increase W

approaching �L, the evolution given by two models differs
for all times. This means that for any given disorder strength
the non-Hermitian description will be a good approximation
provided that the energy bandwidth of the lead is sufficiently
large.

To further illustrate this point, we now analyze the
agreement between the two models looking at the transport
efficiency η(t), commonly used in literature, defined as

η(t) = 1 − P (t). (60)

Note that η(t) is the probability that the excitation has escaped
into the lead within the time t . In our simulations, we set
t = �/γ . If P (t) decays with a rate γ /�, corresponding to that
of noninteracting decaying sites, η(�/γ ) assumes the value
1 − 1/e. Hence, a value of η(�/γ ) grater than 1 − 1/e signals
a superradiant cooperative decay, while a value of η(�/γ )
smaller than that threshold signals a subradiant decay. In what
follows, we will denote simply by η the value η(�/γ ).

In Fig. 11, we show the efficiency η varying the coupling �L

in the lead (and accordingly modifying �RL and NL to keep
the decay rate γ fixed and remove the bouncing effect). The
results of the non-Hermitian model are shown as full curves,
while those of the Hermitian model are shown as symbols. In
the upper panel, we consider the fully symmetric initial state
|S〉 of Eq. (32), while in the lower panel, we consider the fully
antisymmetric state |AS〉 of Eq. (43). For zero disorder, the
state |S〉 is superradiant and the state |AS〉 is subradiant with
zero decay width.

For the non-Hermitian case, the behavior of η is inde-
pendent of �L, since we kept γ fixed: the efficiency of

FIG. 11. (Color online) The efficiency, Eq. (60), computed start-
ing from the symmetric state of Eq. (32) (ηS , upper panel) and
computed starting from the antisymmetric state of Eq. (43) (ηAS ,
lower panel) is plotted versus the disorder strength W . By varying
�L, we see that the non-Hermitian prediction (full curves) agrees with
the Hermitian evolution (symbols) up to a disorder strength (vertical
dashed lines) proportional to �L. The dotted horizontal lines indicate
the noninteracting sites efficiency 1 − 1/e. The parameters used are
NR = 4, � = 1, γ = 2, NL = �L (to avoid bouncing effects).

the symmetric state (Fig. 11, upper panel) decreases with
the disorder strength, asymptotically approaching the value
1 − 1/e (dotted line), which would be the efficiency of
noninteracting decaying sites, while the efficiency of the
antisymmetric state (Fig. 11, lower panel) increases with the
disorder up to the same limiting value.

As for the Hermitian model, it is in perfect agreement with
the non-Hermitian one for small disorder strength, while, for
strong disorder, the efficiency goes to zero. This is due to the
fact that, when W > 4�L, some of the energy levels in the
ring lie outside the energy band in the lead, thus producing
a suppression of decay. Such a suppression is completely
neglected in the non-Hermitian model which is derived by
assuming an infinite energy band in the lead, as explained at
the beginning of this section. Most importantly, we notice that
the agreement between the Hermitian and the non-Hermitian
model increases proportionally to �L, see vertical dashed lines
in Fig. 11. In the following sections, we will analyze whether
the interesting effects found in the non-Hermitian model
and described at the beginning of this section (cooperative
robustness and subradiant hybrid states) can be found also in
the Hermitian model for W � �L.

B. Cooperative robustness to disorder

As already mentioned, disorder will quench superradiance
and the critical disorder Wsr at which this occurs has been
computed in Ref. [17, Eq. (11)], for the non-Hermitian model,
assuming a disorder-independent opening strength. For the
sake of clarity, we report below that result:

Wsr =
√√√√√ 48�2(NR − 1)∑NR−1

q=1
1

(cos 2πq

NR
−1)2+ N2

R
γ 2

16�2

. (61)

For the parameter range, NRγ � 4�, Eq. (61) reduces to

Wsr =
√

3NRγ. (62)

We stress that the linear growth of Wsr with the ring size
NR , Eq. (62), is a manifestation of cooperative robustness to
disorder.

To illustrate this effect, we plotted in Fig. 12 the transport
efficiency η versus disorder computed taking as initial state the
symmetric state |S〉, for different ring sizes NR . The results for
the non-Hermitian model (full curves) are compared with the
results for the Hermitian model (symbols). The agreement
between the two models persists up to a certain value of W

indicated by the vertical arrow in Fig. 12. The fact that above
this value of disorder the agreement between the two models
becomes poor is due to the finite energy bandwidth in the lead.
As it has been explained in the previous section, the value of
W up to which the to models agree, depends only on W/4�L,
which is kept fixed for the data shown in Fig. 12.

Figure 12 clearly shows that, even in the full Hermitian
model, upon increasing the ring size, the disorder needed
to quench the superradiant transport increases. That disorder
strength is well estimated by Wsr given in Eq. (62) (see
vertical dashed lines in Fig. 12). We also checked that the
full expression for Wsr, Eq. (61), gives a good estimate of
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FIG. 12. (Color online) The efficiency ηS , Eq. (60), computed
starting from the symmetric state of Eq. (32), is plotted vs the disorder
strength W . The size NR of the ring has been varied, keeping fixed
� = 1, �RL = 10, �L = 100, and NL = 100. Symbols are obtained
with the Hermitian model, while solid curves with the non-Hermitian
one. The dashed horizontal line indicates the noninteracting sites
efficiency 1 − 1/e, asymptotically approached by the non-Hermitian
evolution. The vertical dashed lines mark the superradiance transition
Wsr, Eq. (62), and the arrow roughly indicates the value of disorder
up to which the two models agree.

the critical disorder quenching superradiance in any parameter
range for the Hermitian model provided that W � �L.

C. Hybrid subradiant states

In Refs. [17,18], it was shown that the superradiant state
does not localize at the finite-size Anderson transition, Wloc,
Eq. (57), but it starts to localize only above the superradiant
transition, Wsr. On the other side, subradiant states feel the
Anderson transition in a way similar to that of the states
of the closed system. Specifically, it was shown that, for
Wloc < W < Wsr, subradiant states display a hybrid nature,
with an exponentially localized peak and an extended plateau.
The persistence of signatures of Anderson localization in
the subradiant regime is somehow surprising; since in this
regime, the opening is large, one could expect that the
long-range coupling induced by the opening would destroy
localization. This regime was named subradiant hybrid regime
in Ref. [18].

To show that this regime is present also in the Hermitian
model, we cannot follow the same procedure that was followed
in Refs. [17,18], where the structure of the eigenstates of the
effective Hamiltonian was analyzed. On the other side, we can
analyze the long-term dynamics of a state initially localized
on a single site of the ring. This state has a small overlap with
the superradiant state. That component will decay fast, and
the dynamics will bring the system in the subradiant subspace
with a much slower decay. Thus we can expect that the hybrid
structure of the subradiant states will reveal itself in the long-
time form of the wave function.

In order to show this point, in Fig. 13, we plot the probability
of being on the ring site r , obtained by the long-time evolution
of an excitation initially localized on site 1. We chose the

FIG. 13. (Color online) Probability of being on a ring site at
distance d from site 1, obtained by the long-time evolution of an
excitation initially localized on site 1, for different values of the
ring size NR . The wave function ψ∗ is normalized by setting to
1 the probability of being on the ring. We construct the long-
time shape of the probability by letting the system evolve until
a steady configuration is reached. We chose the disorder strength
W = 10 in a regime where Anderson localization should be achieved,
while superradiance is not yet destroyed, that is, Wloc < W < Wsr.
Parameters are � = 1, �RL = 10, �L = 100, γ = 2, and NL = 100.
The agreement between the Hermitian model H + D (circles) and
the non-Hermitian one Heff + D (solid curves) is very good. The
exponential peak on the initially excited site corresponds to the one
obtained for a closed ring (�RL = γ = 0), indicated by the black
dashed curve. Dotted horizontal lines mark the values 0.38/NR and
have been drawn to highlight the scaling of the plateau with the ring
size.

disorder strength W in a regime where Anderson localization
should be achieved, while superradiance is not yet destroyed,
that is, Wloc < W < Wsr. Of course, we chose a value of �L

for which the agreement between the Hermitian and the non-
Hermitian model is good in the relevant disorder range. The
probability plotted in Fig. 13 is normalized by setting to 1 the
probability of being on the ring.

In the localized regime and in absence of the coupling
with the lead, the diffusion of an excitation initially placed
on one site would be suppressed, resulting in a long-time
probability distribution exponentially localized on the initial
site (see dashed curve in Fig. 13).

On the other side, in the full model, we obtain a hybrid
state, characterized by an exponential peak on the initial site
and a fully extended plateau on the other sites. The important
features of this hybrid structure are (i) the exponential peak
coincides with the one obtained in a closed ring (for which
�RL = γ = 0) and (ii) the probability on the extended plateau
decreases as 1/NR as we increase the ring size. Again we
observe that the non-Hermitian model (solid curves) is in very
good agreement with the Hermitian one (circles), thus proving
that the presence of hybrid subradiant states, described in
Ref. [18], is a genuine feature of the full Hermitian model from
which Heff is deduced. Importantly, in the limit NR → ∞, the
subradiant states become fully localized. For a more detailed
discussion of the origin of this regime see Ref. [18].
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VII. TRANSPORT IN A GENERIC NETWORK

In order to discuss the range of applicability of the
results discussed so far, we consider here a generic example
of network with a sink represented by an external one-
dimensional lead. From our previous results, we expect that
the energy-independent non-Hermitian Hamiltonian approach
will be valid under the condition that the energy band in the
lead is much larger than the energy range of the network.

We consider a fully-connected disordered network, de-
picted in the upper panel of Fig. 14. The system is described
by a tight-binding Hamiltonian with site energies chosen
randomly in the interval [−W/2,W/2]. Moreover, each site
is coupled to all of the other sites with a tunneling coupling �

randomly distributed in the interval [−1,1]. One of the sites
is coupled to an external one-dimensional lead with coupling
�RL. The external lead is an ordered chain of sites connected
with tunneling coupling �L.

The non-Hermitian Hamiltonian for this model can be
obtained, following Sec. III, by adding to the energy of the
site connected to the lead the imaginary term −iγ /2, with
γ given in Eq. (29). The diameter in the complex plane of
the eigenvalues of the non-Hermitian Hamiltonian defines the
energy range �E of the disordered network, while the energy

FIG. 14. (Color online) In this figure, we consider a fully con-
nected disordered network, depicted in the upper panel and described
in Sec. VII. One of the sites (red bottom-right site) is coupled to an
external one-dimensional lead with NL = 4000. In the lower panel,
we compare the results of the Hermitian model (symbols) with those
of the non-Hermitian one (curves). We analyze the probability P (t) of
being in the network vs time, computed for an initial state localized
on one site (green upper-left site, upper panel) that is not directly
connected to the lead. Data shown refer to a single realization of the
disordered network, and they have been obtained by changing the
ratio �E/4�L between the energy range of the disordered network
and the energy band in the lead (see legend). Note that we kept the
value γ = 2 constant and we chose W = 1.

bandwidth in the lead is given by 4�L. We thus expect the
non-Hermitian approximation to be effective when �E/4�L

is sufficiently small.
To show this point, we analyze the probability of being

in the network versus time, computed for an initial state
localized on one site that is not directly connected to the
lead. The typical result is shown in Fig. 14, lower panel: when
�E/4�L < 1, the Hermitian and non-Hermitian models agree
(compare diamonds with green curve) in a large time window;
on the other side, when �E/4�L > 1, the non-Hermitian
model looses its validity (compare circles with red curve).

VIII. CONCLUSIONS

We analyze the problem of describing the transport prop-
erties of quantum networks coupled to external environments
acting as sinks, in the sense that they absorb the excitation
from the network in an irreversible way. To this end, we
analyze a paradigmatic model for quantum transport and
decay. Our tight-binding model consists of a network of
sites arranged in a ring and connected to a central lead. We
derive an energy-independent non-Hermitian model, which
greatly simplifies the analysis of its transport properties. This
non-Hermitian model retains only the degrees of freedom of
the ring, summarizing the coupling with the infinite degrees
of freedom of the lead into non-Hermitian opening terms,
which induce a decay of the probability to be on the ring.
Such non-Hermitian terms can be obtained from the same
quantities, which are used in the Fermi golden rule: the
transition amplitudes from the discrete states of the quantum
network to the continuum of states in the external sinks, and
the density of states in the sinks.

Such a kind of non-Hermitian models are widely used in
literature, but the problem of their validity is often overlooked.
Here, by comparing the results of the full Hermitian model with
those given by the non-Hermitian one, we demonstrate that
the energy-independent non-Hermitian Hamiltonian approach
is valid in the regime of large energy band in the lead. Under
that condition, we show that the interesting effects usually
described with the non-Hermitian model, such as super- and
subradiance in transport, are present also in the full Hermitian
model.

We also consider the decay from the ring in presence of
static disorder. We discuss the validity of the assumption
that the opening strength to the continuum is independent
of disorder, which is often used in literature since it greatly
simplifies the problem. We show that the non-Hermitian
Hamiltonian, with opening terms independent of disorder, is
able to describe the decay in the full Hermitian model for a
range of disorder for which the energy range in the ring is
much smaller than the energy band in the lead. In this regime,
we were able to confirm the existence of the interesting effects
predicted within the non-Hermitian Hamiltonian approach also
in the full Hermitian model. Indeed, superradiant states are
cooperatively robust to disorder, while subradiant states show
a different behavior, displaying a hybrid nature, due to the
interplay of disorder and opening.

Our results have a wide range of applicability: if we con-
sider a generic quantum network of sites coupled to an external
lead, the energy-independent non-Hermitian Hamiltonian
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approach is valid under the condition that the energy band in
the lead is much larger than the energy range of the network.
Specifically, in this limit, it can give an accurate description of
any observable of the network. In the case of generic external
environments acting as sinks, the same approach is effective
when the transition amplitudes from the network states to
the sink states are smooth and slowly varying functions
of the energy, in the range determined by the eigenvalues
of the disordered network. Moreover, we want to stress that, for
this approach to be valid, the coupling between the system and
the environment does not need to be small with respect to the
characteristic energy scale of the system, but only with respect
to the characteristic energy scale of the external environment.
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APPENDIX A

In order to estimate the effect of the finite bandwidth
on the decay, we consider a different approximation of the
time-evolution operator of Eq. (35), slightly more refined
than the one leading to Heff and Eq. (37). We assume the
bandwidth to be finite, but large enough to justify the following
approximation: we consider the transition amplitude Ar (E)
and the density of states ρ(E), see Eq. (27), to be constant in
the finite energy band [−2�L,2�L]. Specifically, we assume
that Ar (E)(Ar ′(E))∗ρ(E) = γ /2π inside the energy band of
the lead and zero outside. We can now substitute in Eq. (35) the
limiting values given by Eq. (36), that corresponds to choosing

�sr(x) =
{
γNR, for x ∈ [−2�L,2�L]
0, otherwise. (A1)

Moreover, we also assume �sr(x) = 0. The evolution operator
of Eq. (35) becomes then

US(t,0) ≈ 1

2πZ

∫ 2�L

−2�L

e− i
�

xtγNR

[x − 2�]2 + 1
4γ 2N2

R

dx, (A2)

which is the Fourier transform of a truncated Lorentzian
suitably normalized by means of the factor Z to ensure that
US(0,0) = 1. The evolution will be well approximated by an
exponential only for intermediate times and we will have
deviations both for small and large times, due to the truncation
at the edges of the energy band of the lead.

Some remarks on the accuracy of the approximation leading
to Eq. (A2) are in order. Given the choice of �sr(x) in Eq. (A1),
it is possible to explicitly compute the energy shift

�sr(x) = γ ln
|x + 2�L|
|x − 2�L| . (A3)

The latter function is odd, with derivative

�′(0) = γ

2π�L

,

and slowly divergent as x approaches the edges of the band.
We then see that, by setting �sr(x) = 0, we obtain an integrand

in Eq. (A2) significantly distorted if compared to the exact one
[Eq. (35)] only in a neighborhood of the edges of the band.
To minimize the effects of such a distortion, it is then crucial
that the maximum point of the exact integrand function lies
far enough from the edges of the energy band of the lead.
Moreover, we need the decay width of the superradiant state
to be much smaller than the energy band in the lead. Since the
position of the maximum point is determined (to leading order)
by the average energy of the superradiant state 〈S| H |S〉 =
2�, we obtain the conditions:

� � �L, NRγ � 4�L. (A4)

These conditions are necessary for the approximation leading
to Eq. (A2) to be accurate.

Starting from the evolution operator obtained in Eq. (A2),
we can now give an estimate of the times t0 and tS at which
the decay of the survival probability P (t), computed with
the Hermitian evolution of |S〉, changes from the quadratic
behavior to the exponential decay predicted by the non-
Hermitian model (t0) and from the exponential decay to a
power-law decay (tS).

The evolution operator US(t,0) of Eq. (A2) is given by the
Fourier transform of a Lorentzian function multiplied by a
rectangular function with support on [−2�L,2�L]. Recalling
that the Fourier transform of that rectangular function is given
by

sin
( 2�L

�
t
)

πt

and that the Fourier transform of a product is the convolution
of the Fourier transforms, Eq. (A2) becomes

US(t,0) =
∫ +∞

−∞

sin
( 2�L

�
τ
)

Zπτ
e− 2�i

�
(t−τ )e− γNR

2�
|t−τ | dτ. (A5)

Now, since

lim
ω→∞

sin(ωτ )

πτ
= δ(τ )

for any ω in the sense of distributions, if we consider in
Eq. (A5) the wide-band limit �L → ∞, we immediately
recover the evolution given by Eq. (37) for any time t . On the
other hand, the effects of a finite bandwidth strongly modify
the decay at both small and large times.

Under the assumption of Eq. (A4), we can set � ≈ 0 and
neglect the oscillating term e− 2�i

�
(t−τ ), so that US(t,0) reduces

to the convolution of the exponential decay e− γNR
2�

|t | with the
kernel

K(τ ) = sin
( 2�L

�
τ
)

Zπτ
. (A6)

The normalization factor Z, needed to compensate the approx-
imation �(x) ≈ 0 already introduced in Eq. (A2), can be easily
found by applying the normalization condition US(0,0) = 1.

The fact that the small-time decay is quadratic can be easily
seen by considering the parity of e− γNR

2�
|t | and K(τ ): since they

are both even functions, their derivatives are odd and∫ +∞

−∞

sin
( 2�L

�
τ
)

Zπτ

d

dt
(e− γNR

2�
|t−τ |)

∣∣
t=0 dτ = 0.
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FIG. 15. (Color online) To illustrate the argument presented in

this section, we plotted the exponential function e− γNR
2�

|τ | (dashed
red curve) and the kernel K(τ − t) of Eq. (A6) (solid curves) for
different times t . The shaded regions are those providing the dominant
contribution to the convolution product of Eq. (A5) at each time.

Consequently, the derivative of US(t,0) vanishes for t = 0 and
the decay is quadratic. This is true for any finite value of �L,
but we see a sharp transition to a linear short-time decay in the
limit �L → ∞.

An intuitive explanation of that transition can be given with
the aid of Fig. 15. In the first panel we plotted e− γNR

2�
|τ | and

K(τ − t) for t = 0. The evolution at each time t is given by the
integral of the product of the exponential and the kernel K and
the dominant contribution for t = 0 comes from the shaded
region in Fig. 15 first panel. The amplitude of this region is
twice the inverse of the oscillation frequency 2�L/�. As we
increase t of a small amount dt , since the shaded region lies on
both sides of the peak of the exponential function, the variation
in the integral is of order O(dt2), producing a quadratic decay.
This is no longer true in the limit �L → ∞, since K tends
to a Dirac function whose support can lie only on one side of
the peak, so that the variation of the convolution integral is of
order O(dt), entailing a linear small-time decay.

From analogous considerations, we can estimate t0 as the
time at which the relevant region (shaded region in Fig. 15,
second panel) lies only on one side of the peak of the
exponential. Since the peak of the kernel K(t − τ ) is at τ = t ,
we have

t0 = �

2�L

. (A7)

We can then see that, for t > t0 the decay is exponential, since
the main contribution to the convolution integral (see shaded

regions in Fig. 15, second panel) is proportional to

e− γNR
2�

|t |.

For even larger times, together with the previously de-
scribed exponential term (right shaded region in Fig. 15, third
panel), a second term contributes to the convolution integral
(left shaded region in Fig. 15, third panel). The first involves
the central part of the kernel K and the tail of the exponential
function, while the second involves the tail of the kernel K

and the central part of the exponential function. The first
contribution is again proportional to e− γNR

2�
|t | and the second

one to �/(2�Lt). When the term involving the tail of K is
dominant, we have a power-law decay. Hence we can estimate
the transition time tS as the time at which the two contributions
are comparable by setting

e− γNR
2�

tS ≈ �

2�LtS
,

which leads to the equation

γNR

2�
tS = ln

4�L

γNR

+ ln
γNR

2�
tS

and, neglecting the last logarithmic term, to the estimate

tS ∝ 2�

γNR

ln
4�L

γNR

. (A8)

The exponent of the power-law decay, being determined
by the long-time behavior of the convolution kernel K , is
strongly dependent on how the Lorentzian density of Eq. (A2)
is deformed to be zero outside the energy band of the lead.
Indeed, the sharp truncation considered above, given by the
definition of �sr in Eq. (A1), corresponds to multiplying the
Lorentzian with a rectangular function, that produces a 1/t

decay due to the form of the kernel K of Eq. (A6).
Nevertheless, we can easily understand the effect of a

different deformation: if we multiply the Lorentzian function
in Eq. (A2) by a compactly supported function, which goes to
zero as (x − Eedge)p in proximity of the edges of the energy
band, by a well-known result in Fourier analysis [25,33], we
will obtain a convolution kernel K , which decays as 1/tp+1

for large times. Such a modification does not affect any of
the foregoing results, but produces a long-time decay of the
probability amplitude proportional to 1/tp+1. Consequently,
the survival probability P (t) will decay as 1/t2(p+1).

If we consider now the detailed structure of �sr in the
finite-bandwidth case, Eq. (33), we see that it goes to zero
in proximity of the edges of the energy band with exponent
p = 1/2. This implies a decay 1/t3/2 of the convolution kernel
and the decay 1/t3 of the survival probability P (t), which was
indeed found in the numerical results shown in Fig. 4.

APPENDIX B

To determine the behavior for very short times, we will
follow now a different approach, more heuristic than the one
used in Appendix A. If we consider an initial state on the ring,
then it “becomes aware” of the presence of the lead only after
some time. In particular, we can expect the initial dynamics
to be determined by the interaction of the ring with the first
site of the lead. If we had �L = 0, the fully symmetric ring
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state |S〉 would be only coupled to the first lead site, and its
dynamics would be determined by the 2 × 2 Hamiltonian(

2�
√

NR�RL√
NR�RL 0

)
,

which has eigenvalues

λ1,2 = � ±
√

�2 + NR�2
RL.

Consequently, we obtain the following estimate for the short-
time decay of the survival probability of the superradiant state:

P (t) ≈ 1 − NR�2
RL

�2
t2. (B1)

According to the foregoing argument, the time t0 up to
which Eq. (B1) can be a good approximation of the dynamics

should decrease upon increasing the coupling �L within the
lead. Indeed, the value t0 = �/2�L, presented in Eq. (A7),
gives a good estimate of this threshold. Clearly, the non-
Hermitian model cannot reproduce the true dynamics of the
system up to t0, since that model is obtained considering the
effect of a lead with an infinite coupling �L in the lead.

Let us now consider the case of a disordered ring described
by the Hamiltonian H + D, Eqs. (22, 56). Also in this case,
for short times the true evolution will be different from the
evolution given by the non-Hermitian model. Indeed, the
short-time dynamics is well approximated by the evolution
under H̃ + D, where H̃ describes the subsystem formed by
the ring and the first lead site. We can estimate with the same
t0 given above the time up to which the system does not feel
the presence of the other lead sites and, consequently, the
non-Hermitian model is not applicable.
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