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Scale-invariant phase transition of disordered bosons in one dimension
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The disorder-induced quantum phase transition between superfluid and nonsuperfluid states of bosonic
particles in one dimension is generally expected to be of the Berezinskii-Kosterlitz-Thouless (BKT) type. Here,
we show that hard-core lattice bosons with power-law hopping decaying with distance as 1/rα with a finite
integral over space—corresponding in spin language to an XY model with power-law couplings—undergo a
non-BKT continuous phase transition instead. We use exact quantum Monte Carlo methods to determine the
phase diagram for different values of the exponent α, focusing on the regime α > 2. We find that the scaling of
the superfluid stiffness with the system size is scale invariant at the transition point for any α � 3—a behavior
incompatible with the BKT scenario and typical of continuous phase transitions in higher dimension. By a
scaling analysis near the transition point, we find that our data are consistent with a correlation length exponent
satisfying the Harris bound ν � 2 and demonstrate a universal behavior of disordered bosons in one dimension.
For α > 3 our data are consistent with a BKT scenario where the liquid is pinned by infinitesimal disorder.
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Bosonic particles with local interactions in one dimension
(1D) are described by a universal harmonic theory, known as
a Luttinger liquid (LL). The latter corresponds to quantized
superfluid hydrodynamics (including instantons) and is fully
characterized by the superfluid velocity, v = √

Ys/κ , and LL
parameter, K = π

√
κYs, with κ the compressibility and Ys the

superfluid stiffness. Diagonal disorder induces an instability
in LL towards a nonsuperfluid Bose glass (BG) phase—a
compressible insulator displaying exponential decay of off-
diagonal correlations. In their seminal paper [1], Giamarchi
and Schulz found by means of a perturbative renormaliza-
tion group (RG) analysis that the LL-BG transition is of the
Berezinskii-Kosterlitz-Thouless (BKT) type that takes place
at the universal value K = Kc = 3/2 (this result holds at the
two-loop level [2]). In the strong-disorder limit, real-space
RG treatments [3,4] and the “scratched-XY ” criticality [5]
also predict a BKT-type transition but at a nonuniversal value
of Kc > 3/2. These considerations exhaust known scenarios
for the disorder-induced superfluid to non-superfluid phase
transitions in 1D.

In this Letter, we consider the disorder-induced localiza-
tion transition in 1D superfluids of bosons with power-law
hopping decaying with distance as 1/rα . We utilize numer-
ically exact large-scale quantum Monte Carlo simulations
based on the worm algorithm [6] to determine the ground-state
superfluid phases and phase transitions for different values
of α > 2. We find that the superfluid phases can be approx-
imately characterized by an effective LL parameter K that
reproduces the decay of correlation functions. However, con-
trary to existing theories, we find that the disorder-induced
quantum phase transition is generically scale invariant and
incompatible with the BKT scenario with the effective Kc �
3/2 for all α � 3. As far as critical exponents are concerned,
the data are consistent with the correlation length exponent

satisfying the Harris bound ν � 2 for all values of α � 3.
Thus, our results reveal a universal behavior of bosons with
power-law hopping in one dimension with a finite integral
over space. For α > 3 our results are instead consistent with
a scenario where the superfluid is pinned by an infinitesimal
disorder in the thermodynamic limit, similar to a BKT-like
scenario for hard-core particles with short-range coupling.
Our predictions are directly relevant for experiments with
dipolar atoms and molecules, exciton materials, and cold ions.

We consider the following 1D lattice Hamiltonian for hard-
core bosons

H = −t
∑

i< j

aα

|ri j |α [b†
i b j + H.c.] +

∑

i

εini (ni � 1). (1)

We employ standard notations for bosonic creation and anni-
hilation operators on site i and restrict the maximal occupation
number, ni = b†

i bi, to unity. The nearest-neighbor hopping
amplitude t and the lattice spacing a are taken as units of
energy and length, respectively. We choose random on-site
energies εi uniformly distributed between −W and W , and
check that a different (Gaussian) choice of distribution does
not affect the results. In spin language, Eq. (1) is equivalent
to an XY Hamiltonian with power-law exchange couplings,
which, in the absence of disorder, can be realized in exper-
iments with cold polar molecules [7], trapped ions [8–10],
and Rydberg atoms [11–16] (the latter can also be disordered
[17]).

For an ideal system with W/t = 0, the spectra and low-
energy phases of Hamiltonian (1) have been investigated
by a variety of approaches. Using linear spin-wave theory,
Ref. [18] identified α > 3 as a regime where main properties
reproduce those observed in the α = ∞ limit of finite-range
interactions, 1 < α < 3 as an intermediate regime with the
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FIG. 1. Characterization of the superfluid phase for W/t = 0:
(a) Dispersion relations E (k) vs k for α = 2.5, 3.0, and 3.2 chosen in
the intermediate- and short-range regimes, respectively (see text) for
L = 256. (b) Single-particle density matrix G(�) vs chord distance
c(�) = sin(π�/L)/ sin(π/L) showing an algebraic decay for all α

for L = 512. Dashed lines indicate the best fit with Ac(�)−γ where
A, γ are fitting parameters. (c) Numerical evaluation of the Luttinger
liquid parameter K as a function of α from the power-law decay
G ∝ �−1/(2K ) (green dots) and from the relation K = π

√
κYs (red

squares) extrapolated to the thermodynamic limit via a polynomial
scaling in 1/L.

XY phase characterized by a continuously varying dynam-
ical exponent z = (α − 1)/2 (it governs the k → 0 limit of
the dispersion relation), and α < 1 as a long-range regime
with dispersionless excitations and properties similar to the
infinite-range α = 0 case in the thermodynamic limit. In
this harmonic approach, α = 3 is the boundary between the
intermediate- and short-range regimes. Using a bosonization
approach supplemented by an RG analysis, Ref. [19] predicts
that power-law couplings are relevant in the RG sense for
α < 3 − 1/(2K ), with K > 1 to be determined numerically
for each given α. In the following, we study the ground-
state superfluid phases and phase transitions of Eq. (1) for
α > 2 using large-scale path-integral quantum Monte Carlo
simulations based on the worm algorithm [6]. Without loss of
generality, we focus on the particle density ρ = 1/2.

We start our analysis by first characterizing the bosonic
liquid in the absence of disorder (W/t = 0). Figure 1(a)
shows the dispersion relation E (k) vs k for three values of
α = 2.5, 3.0, and 3.2 where k is the quasimomentum. It
was deduced numerically from spectral peaks after analytic
continuation of the imaginary-frequency dynamic structure
factor [20,21]. The chosen values of α correspond to values

in the expected intermediate- (α = 2.5), boundary- (α = 3.0),
and short-range (α = 3.2) limits of the spin-wave analysis,
respectively. The dispersion relation is nonlinear in k for
α = 2.5 (dots) and the data can be fit well by E (k) ∼ kz∗ , with
z∗ � 0.74, in good agreement with the z = 0.75 prediction of
spin-wave analysis (continuous black line). In the short-range
regime, instead, the dispersion relation is consistent with the
linear law and a small negative quadratic contribution, also in
agreement with literature. We checked that E (k) for different
system sizes agree with each other for the same values of k.
(The dispersion relation in the superfluid phase for α = 2.5
in the presence of disorder is sublinear, as presented in the
Supplemental Material [22].)

For a 1D superfluid ground state, the single-particle den-
sity matrix G(�) = 〈 b†

i bi+�〉 is expected to show an algebraic
decay with the distance � with diverging integral over space.
Our data for G are shown in Fig. 1(b), for the same values of
α as in Fig. 1(a) for a system with L = 512 sites and inverse
temperature β = L/t . We observe algebraic decay G ∼ �−γ

for all α.
Despite the nonlinear dispersion relation demonstrated

above, we attempt a comparison with expectations from LL
theory by extracting an effective LL parameter K as a function
of α from two standard methods: the power-law decay G ∼
�−γ via the bosonization relation γ = 1/(2K ) (green dots)
and the relation K = π

√
κYs (red squares). Both κ and Ys can

be conveniently computed by quantum Monte Carlo through
the mean-square particle, N , and winding number, W , fluc-
tuations using the Pollock-Ceperley relation Ys = L〈W2〉/β.
Figure 1(c) shows that the two methods produce similar esti-
mates of K for all α, within the error bars, which is surprising,
given the nonlinear dispersion relation demonstrated above.
Moreover, K decreases monotonically and continuously with
α from a large value K � 5 at α ∼ 2.3 to K ≈ 1 at α = 4.
Within an approximate LL scenario, this behavior may be
explained by the fact that power-law hopping in Hamilto-
nian (1) allows for large-scale particle exchanges for small
enough α < 3, mimicking the behavior of soft-core bosons,
for which one can easily get K � 1. The K = 1 value (dashed
dotted line) corresponds to the short-range case of hard-core
bosons with the nearest-neighbor hopping, a limit that is here
asymptotically approached at α > 3 [23]. In the following
we analyze the situation at finite disorder strength and, in
particular, explore the nature of the transition point, which
is expected to be of the BKT type for Luttinger liquids.
However, we note that this may not be the case here: BKT
transition and its asymptotically exact RG flow are rooted in
logarithmic interactions between vortex excitations. The latter
originates from the kinetic energy of the flow around vortices
E ∼ ∫

(ns/m)dr/r, where m is the particle mass and ns the
superfluid density. The single-particle spectrum in our model
is not parabolic and formally corresponds to a scale-dependent
“mass” m(r) ∼ r3−α , implying that vortices in the superfluid
phase should be bound by a power-law, not logarithmic, po-
tential. It may thus be expected that BKT physics no longer
applies for α � 3.

We characterize the transition via the winding number
fluctuations 〈W2〉 since they are a scale-invariant quantity,
different from the superfluid stiffness Ys. Figure 2(a) shows
the evolution of superfluid properties measured by 〈W2〉 with
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FIG. 2. Characterization of the superfluid to nonsuperfluid phase transition: (a) Mean-square winding number 〈W2〉 vs disorder strength
W/t for α = 2.7 (open symbols) and 3.2 (solid symbols) for system sizes L = 64, 128, 256. (b)–(e) Zoom-in on the area near phase transitions
for α = 2.5, 2.7, 3.0, and 3.2, showing crossing between the curves; the curve corresponding to the largest size L = 1024 is subtracted from
all data for clarity. Vertical error bars indicate the estimated uncertainty from the Monte Carlo simulations and disorder averages. Insets:
Finite-size scaling of crossing points between curves for system sizes L1 and L2 = 2L1 as a function of L = L1.

disorder, W/t , for two example cases α = 2.7 (open symbols)
and 3.2 (solid symbols) and for several values of L = 64, 128,
and 256. In both cases, 〈W2〉 decrease monotonically with in-
creasing W/t , until they reach near zero values. This behavior
signals the transition between the superfluid and nonsuper-
fluid states. In the short-range case α = 3.2, the behavior at
larger values of disorder is reminiscent of what is expected for
a BKT transition when in the infinite system 〈W2〉 displays a
jump to zero at the critical point [23]. However, surprisingly,
for α = 2.7 there is a clear crossing point of 〈W2〉 around
W/t ∼ 2. This is inconsistent with the BKT criticality and is,
instead, a signature of continuous scale-invariant phase tran-
sitions. This fact can be used to pinpoint the critical disorder
strength Wc where superfluidity is lost by the crossing point of
〈W2〉 vs W curves for different values of L. Figures 2(b)–2(e)
present data in the vicinity of transition points for α = 2.5,
2.7, 3.0, and 3.2 using β = L/(8t ) (even for α = 3.2 our
temperature is a factor of 2 smaller than the lowest phonon
mode). Crossing points are very pronounced in Figs. 2(b)
and 2(c) for intermediate exponents α, leaving no doubt that
we are dealing with generic continuous transitions at W/t =
3.24(5) for α = 2.5 and at W/t = 2.12(5) for α = 2.7. The
crossings appear to persist when transitioning to the short-
range regime α � 3 [see Figs. 2(d) and 2(e) with crossings
around W/t = 0.87(5) for α = 3.0 and around W/t = 0.5(5)
for α = 3.2, contrary to all expectations]. However, a careful
finite-size scaling up to large system sizes L = 1024 shows
that the transition point for α > 3 scales to W/t → 0 in
the thermodynamic limit [see the inset in Fig. 2(e), imply-
ing the absence of a continuous phase transition at finite W
in the thermodynamic limit]. This is different from α � 3,
where the transition point scales to a finite value of W/t [see
the insets in Figs. 2(b)–2(d)]. The breakdown of the BKT

scenario for all values 2 < α � 3 in Eq. (1) is surprising and
is the main result of this Letter.

Figure 3(a) summarizes the ground-state phase diagram
of Hamiltonian (1) in terms of Wc and α. Here, for each
α � 3, the critical point Wc is determined from the scale-
invariant crossing point as described above. The critical
disorder strength Wc/t decreases monotonically from a large

FIG. 3. (a) Phase diagram, Wc vs α, of the superfluid and non-
superfluid quantum phases for model (1). (b) Critical values of LL
parameter Kc at Wc vs α, as estimated from the power-law decay of
G (green dots) and from K = π

√
κYs (red squares) for L = 256.
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FIG. 4. (a)–(c) Data collapse for the scaled superfluid stiffness
L−ζ/νYs vs L1/ν[(W/t ) − (Wc/t )] for α = 2.5, 2.7, and 3.0 using L =
64, 128, and 256. The fitted values of the correlation length exponent
ν and ζ are reported directly in the figure. They satisfy ν � 2 for
all α.

value Wc/t ∼ 5.1 to ∼0.9 for α = 3. For α > 3 the transition
in the thermodynamic limit occurs at Wc/t = 0+. The limiting
value Wc/t = 0+ would correspond to the strictly short-range
limit of hard-core bosons with short-range hopping, which are
known to be localized by an infinitesimal disorder [23].

Figure 3(b) shows the critical LL parameter Kc computed
at Wc/t for each value of α assuming that the approximate
LL scenario properly describes the system. We find that,
for α � 3, Kc remains smaller than the critical BKT value
of 3/2 for short-range hopping models with weak disorder
[23], confirming that the LL theory should not be used to
describe the localization transition in the whole range α � 3.
In contrast, for α > 3 our results are in agreement with the
conclusion that ideal systems with K < 3/2 are ultimately
pinned by disorder, leading to an insulating BG phase for
any finite value of W/t . We complete our characterization of
the quantum phase transition in Fig. 3(a) by determining the
correlation length exponent ν using a data collapse analysis
near the critical points [24]. For each α, the results of Monte
Carlo simulations are rescaled by L−ζ/νYs and collapsed on a
single master curve using L1/ν[(W/t ) − (Wc/t )] as a variable.
Critical values Wc/t are taken from the crossing points in
Fig. 2, while ν and ζ are treated as fitting parameters and
obtained using a Nelder-Mead algorithm [25] with a cost func-
tion based on the Kawashima-Ito-Houdayer-Hartmann quality
metric [26,27]. Example results for α = 2.5, 2.7, 3.0 and
α = 3.2 are shown in Figs. 4 and 5, respectively. We observe
good collapse of all data near the critical points for α � 2,
and the obtained correlation length exponents always satisfy
the so-called Harris bound ν � 2 (see Ref. [28]). In fact, this

FIG. 5. Data collapse for the scaled superfluid stiffness L−ζ/νYs

vs L1/ν[(W/t ) − (Wc/t )] for α = 3.2 using L = 64, 128, and 256.
The fitted values of the correlation length exponent ν and ζ are
reported directly in the figure. Unlike for α < 3, this scaling cor-
responds here to a finite-size effect, as the transition is not located at
Wc/t = 0.57 and slowly shifts to Wc/t = 0 [see Fig. 2(e)].

result is expected from general arguments for a large class
of d-dimensional disordered systems where an appropriately
defined correlation length diverges [29]. Data collapse for
α > 3 using Wc/t = 0.57 is a finite-size effect given that this
value of α is close to the boundary between the intermediate-
and short-range regimes and crossing points slowly shift to
zero with increasing the system size. However, this effect
will likely be observed in experiments dealing with finite
systems.

In conclusion, we have demonstrated that the disorder-
induced superfluid to nonsuperfluid quantum phase transition
for models with power-law hopping is a scale-invariant tran-
sition if 2 < α � 3, ruling out the expected BKT scenario for
interacting one-dimensional bosons in this regime. Our work
opens up multiple other research directions, including whether
the finite-temperature BKT scenario is generally inconsis-
tent with power-law hopping models also in two dimensions
[30–32]. Another open question is the nature of the nonsuper-
fluid quantum phase for general values of α. In Ref. [33] it was
conjectured that for α = 3 this phase is a nonsuperfluid Bose
metal phase with finite zero-frequency optical conductivity
and algebraic decay of correlations. It is an open question
whether similar behavior can be found for other α values. Our
predictions should be directly testable in experiments for XY
models realized via internal excitations of cold dipolar atoms
and molecules, cold ion chains, and Rydberg atoms.
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In this work, we study a one-dimensional disordered lattice boson model with hopping amplitude decaying with
distance as 1/rα using large scale quantum Monte-Carlo simulations. A recent work [1] based on approximate
functional renormalization group methods (submitted to the archive after our work was published online) proposes
that in the stable superfluid phase at finite disorder strength (W/t > 0), a density mode with linear dispersion
(dynamical exponent z = 1) should emerge and the superfluid–Bose-glass transition follows the BKT universality
class for any α, in contradiction to our results. In this Supplemental Material we check the predictions of [1]. Our
analysis based on large scale numerical simulations confirms the picture that we present in the main text.

I. DISPERSION RELATION IN THE SUPERFLUID PHASE WITH FINITE DISORDER

The study presented in [1] proposes, using approximate functional renormalization group methods, that in the
stable superfluid phase a density mode with linear dispersion (dynamical exponent z = 1) should emerge, and that
the superfluid–Bose-glass transition follows the BKT universality class. To test these predictions, we performed large
scale quantum Monte Carlo simulations for α = 2.5 and disorder strength W/t = 2.0 to determine the dispersion
relation by numerically analyzing the spectral peaks after performing an analytic continuation of the imaginary-
frequency dynamic structure factor [2, 3].
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FIG. 1. Dispersion relation E(k) vs k for α = 2.5 in the superfluid phase at finite disorder strength W/t = 2.0.

Our results, presented in Figure 1 of this Supplemental Material, demonstrate that the spectrum is non-linear in
k for α = 2.5 at W = 2.0 and the data is well described by E(k) ∼ kz∗ , with z∗ ≃ 0.76. We checked for finite size
effects (e.g., L = 64 in the figure), founding no significant impact. These results contradict the theoretical predictions
of linear dispersion proposed in [1].
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