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Universal stability of coherently diffusive one-dimensional systems with respect to decoherence
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Static disorder in a three-dimensional crystal degrades the ideal ballistic dynamics until it produces a localized
regime. This metal-insulator transition is often preceded by coherent diffusion. By studying three paradigmatic
one-dimensional models, namely, the Harper-Hofstadter-Aubry-André and Fibonacci tight-binding chains, along
with the power-banded random matrix model, we show that whenever coherent diffusion is present, transport is
exceptionally stable against decoherent noise. This is completely at odds with what happens for coherently ballis-
tic and localized dynamics, where the diffusion coefficient strongly depends on the environmental decoherence.
A universal dependence of the diffusion coefficient on the decoherence strength is analytically derived: The
diffusion coefficient remains almost decoherence independent until the coherence time becomes comparable to
the mean elastic scattering time. Thus, systems with a quantum diffusive regime could be used to design robust
quantum wires. Moreover, our results might shed light on the functionality of many biological systems, which
often operate at the border between the ballistic and localized regimes.
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I. INTRODUCTION

The understanding and control of quantum transport in the
presence of environmental noise is crucial in many areas of
research such as cold atoms [1], mesoscopic systems [2], and
quantum biology [3,4]. A better understanding would allow us
to design more efficient sunlight harvesting systems [5–7], de-
vices that transfer charge or energy with minimal dissipation
[8,9], and biomimetic photon sensors [10] as well as to explain
the functionality of many biological aggregates [11–14]. It
was Anderson [15] who realized that elastic scattering from
random disorder exceeding a critical value induces the local-
ization of quantum excitations and a metal-insulator transition
(MIT). While in three dimensions this critical disorder is
finite, in one dimension any amount of disorder is enough
to localize. Two decades later it was realized that correlated
disorder and long-range hopping could allow a MIT even in
one dimension [16–19].

The different roles of the environment were considered
by Landauer [20], Mott [21], and Haken [22]. Specifically,
Landauer noticed that an actual finite system exchanges par-
ticles with external reservoirs through the current and voltage
probes, a notion that Büttiker used to describe environmen-
tal decoherence and thermalization [23,24]. Both Haken and
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Mott sought to address the role of a thermal bath. A very sim-
ple but widely used model for the environmental bath is the
Haken-Strobl model, which describes uncorrelated dynamical
fluctuations in the site energies.

Later on, Mott predicted a variable-range-hopping regime
in which energy exchange among phonons and Anderson’s
localized states would favor conductivity before decoherence
freezes the dynamics [25]. Thus, in the localized regime,
the one-dimensional (1D) conductivity reaches a maximum
[6,24,26,27] when the energy uncertainty associated with
elastic scattering and that resulting from the coupling with
the environment, i.e., decoherence processes [13,28], become
comparable. In contrast, the ballistic dynamics of a perfect
crystal is always degraded by the thermally induced decoher-
ent scattering processes [29]. A much less studied subject is
how decoherent noise affects transport around the MIT and
more generally in the presence of a quantum diffusivelike
dynamics.

Recent works on excitonic transport in large biomolecules
such as photosynthetic antenna complexes seek to explain the
puzzling great efficiency of many natural [6,27,30,31] and
biomimetic systems. In this context, Kauffman [32] proposed
the intriguing poised realm hypothesis that, in biological sys-
tems, excitation transport occurs at the edge of chaos. This
led Vattay et al. [33] to propose that 1D systems near the
MIT are optimal for transport because environmental deco-
herence does not affect the system as strongly as it does in
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FIG. 1. (a) HHAA model. Horizontal lines are site energies,
Lorentzian uncertainties indicate decoherence, and J is the hopping
amplitude. (b) Excitation spreading for the HHAA model with N =
10 000 for different W . Coherent dynamics are shown with solid
curves, while symbols show decoherent dynamics with a fixed value
of γφ = 0.01J . Symbols and curves share the same color to denote
a given W . The vertical arrow shows the mean elastic scattering
time τW [Eq. (3)]. Black dashed lines are the analytical estimates for
γφ = 0 (see the text for details). The vertical dotted line shows the
decoherence time τφ = h̄/γφ . (c) Scaled diffusion coefficient D/a2

vs the decoherence strength γφ/J for different W . Black solid curves
result from Eq. (4). Different regimes are extended (green circles),
critical (red squares), and localized (blue triangles). The horizontal
black dotted line is the coherent theoretical estimate D0/a2, the
black dashed line is the asymptotic D/a2 � 2J2/h̄γφ , and the vertical
dotted line is the characteristic decoherence γ c

φ = 2h̄/τW . Numerical
data were obtained by the QD method (symbols) for N = 1000. In
all panels q = (

√
5 − 1)/2, J = 1, and h̄ = 1.

the extended regime while it ensures delocalization needed for
transport.

This hypothesis seems at odds with an early theoretical
analysis [34] indicating that it is the intrinsic diffusive dy-
namics of some 1D systems that yields a particular stability
of transport towards decoherence. With the purpose to settle
this conflict, we study a few paradigmatic models that afford
coherent diffusion. We first analyze the Harper-Hofstadter-
Aubry-André (HHAA) model [16] [see Fig. 1(a)], which has
been put in the spotlight [35–37] due to various experimental
implementations [38,39]. In the absence of external noise, we
find, both numerically and analytically, that only at the MIT,
the second moment of an initially localized excitation can be
described by a diffusion coefficient D. There, as long as the
decoherence strength remains below a characteristic value γ c

φ

[see Fig. 1(c)], D is very weakly dependent on the decoherent
noise. In contrast, transport properties in both the extended
and localized regimes are strongly affected by decoherence.
We also find that, at long times, D determines the current
and the system reversibility assessed by the Loschmidt echo
decay. Thus, at the MIT, both magnitudes are almost inde-
pendent of the decoherent noise strength (see Appendixes A
and G). However, these findings do not settle the question of
whether it is the diffusive quantum dynamics that introduces

stability to decoherence or if this stability is inherent to the
critical point. For this reason we also study the Fibonacci
chain [40] and the power-banded random matrices (PBRMs)
[19], where a diffusivelike regime exists in some parame-
ter range independently of their criticality. Our results show
that, whenever a system is in a quantum coherent diffusive
regime, transport is extremely stable towards decoherence,
even outside the critical point. Finally, we are able to find
a universal expression for D, valid in the coherent diffusive
regime, depending only on a single physical parameter: the
ratio between the elastic scattering and the decoherence time.

II. THE HHAA MODEL

The HHAA model [16] [Fig. 1(a)] describes a linear chain
with hopping amplitude J among sites |n〉 at distance a mod-
ulated by a local potential εn, according to the Hamiltonian

H =
∑

n

−J (|n〉 〈n + 1| + |n + 1〉 〈n|) + εn |n〉 〈n| , (1)

where εn = W cos(2πqna + θ ), q = qg = (
√

5 − 1)/2a, and
0 < θ < 2π is a random phase over which we average in
numerical simulations. Other values of q are discussed in
Appendix E. Contrary to Anderson’s 1D model, the HHAA
model presents a phase transition as the eigenstates are ex-
tended for 0 � W < 2J and localized for W > 2J [16]. A
notable trait is that the MIT occurs exactly at W = 2J in
the whole spectrum and that all eigenstates have the same
localization length 2ξ = a/ln(W/2J ) for W > 2J .

The presence of a local white-noise potential is de-
scribed by the Haken-Strobl (HS) model [41], widely used
for excitonic transport. The environment is described by
stochastic and uncorrelated fluctuations of the site energies
V (t ) = ∑

n εn(t ) |n〉 〈n|, with 〈εi(t )〉 = 0 and 〈εn(t )εm(t ′)〉 =
h̄γφδnmδ(t − t ′). The dynamics can be described by the Lind-
blad master equation

ρ̇ = L[ρ] = − i

h̄
[H, ρ] − γφ

2h̄

N∑
n=1

[|n〉 〈n| , [|n〉 〈n| , ρ]], (2)

where γφ/h̄ is a temperature-related dephasing rate. This is a
good approximation when the thermal energy is of the same
order of the spectral width of the system, as it happens in
many biological systems [6,42]. It induces a diffusive spread-
ing of the excitation in the infinite-size limit of tight-binding
models [28]. Notably, the HS master equation leads, at infi-
nite times, to a stationary equally probable population on all
sites [5].

Solving the master equation requires handling N2 × N2

matrices. To overcome this limit we use the quantum-drift
(QD) model [43], an approach conceived as a realization of
Büttiker’s local voltage probes [34] in a dynamical context.
Here the system’s wave function follows a Trotter-Suzuki
dynamics with local collapse processes represented as lo-
cal energies fluctuating according to a Poisson process. This
yields local energies with a Lorentzian distribution of width
γφ/2 (for details see Appendix B), allowing us to handle more
than 104 sites.
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The diffusion coefficient D = σ 2(t )/2t is computed nu-
merically through the variance σ 2(t ) = a2{∑n ρn,n(t )n2 −
[
∑

n ρn,n(t )n]2} starting from a local initial excitation in
the middle of the chain. Our results are confirmed us-
ing the Green-Kubo approach developed in [28] (see also
Appendix D 1).

A. Coherent dynamics in the HHAA model

The initial excitation spreading is always ballistic, σ 2
0 (t ) =

v2
0t2, with a velocity v2

0 = 2a2(J/h̄)2. In the absence of de-
phasing, the long-time behavior of the variance σ 2

0 (t ) can be
computed analytically (see Appendix C) in three regimes. (i)
For W < 2J the spreading is still ballistic, but with a different
mean group velocity u2 = a2|2J − W |2/2h̄2 [see green (upper
light gray) solid curve in Fig. 1(b)]. (ii) For W > 2J , localiza-
tion occurs and the variance saturates at the value σ 2

0 (∞) =
2ξ 2 = 2a2[2 ln(W/2J )]−2 [see blue (bottom dark gray) solid
curve in Fig. 1(b)]. (iii) At the MIT for W = 2J , the variance
grows diffusely [44,45] σ 2

0 (t ) = 2D0t [see red (middle gray)
solid curve in Fig. 1(b)]. This is consistent with Ref. [46],
where deviations from a diffusive regime are shown not to
affect the variance at criticality up to extremely large system
sizes, where a weak superdiffusive dynamics will emerge at
very long times.

The diffusion coefficient D0 = v2
0τW /2 at the MIT depends

on both the initial velocity v0 and the mean elastic scattering
time τW over which local inhomogeneities manifest in the
dynamics of a local excitation,

τW = h̄/�E , (3)

where (�E )2 = 〈(εn − εn+1)2〉/2, with εn = Hn,n = 〈n|H|n〉
and 〈· · · 〉 representing the average over all Hamiltonian di-
agonal elements (when considering disordered models, 〈· · · 〉
also includes average over disorder). For the HHAA model
we have (�E )2 = W 2[1 − cos(2πqa)]/2, and consequently
D0 = a2J2/h̄�E , which are in very good agreement with the
numerical results at the MIT [see Fig. 1(b) and Appendixes
C 2 and E].

B. Decoherence in the HHAA model

When the system is in contact with an environment, the
time-dependent fluctuations of the site energies affect the dy-
namics, inducing a diffusive behavior. In Fig. 1(b) we show
(symbols), for W < 2J and W > 2J , how the dynamics be-
comes diffusive after a time τφ ≈ h̄/γφ (see vertical dotted
line). In general, the diffusion coefficient depends on the deco-
herence strength, except at the MIT, where, interestingly, the
dynamics remains diffusive with a diffusion coefficient very
close to D0 as in the absence of noise.

As the decoherence strength increases, D decreases in the
extended regime, while in the localized regime D reaches a
maximum, as clearly shown in Fig. 1(c). Remarkably, at the
MIT, D is almost independent of decoherence up to γ c

φ =
2h̄/τW [see red squares and vertical dotted line in Fig. 1(c)].
Plotted as a function of the on-site potential strength, the dif-
fusion coefficient curves for different decoherence strengths
intersect at W = 2J , suggesting the independence of decoher-
ence precisely at the MIT (see Fig. 6 of Appendix D 1).

In order to understand the exact dependence of D on γφ

we apply a quantum collapse model for the environmental
noise. The latter can be assimilated to a sequence of measure-
ments of the excitation’s position [43], inducing local collapse
that leads to a random walk [34]. Then D can be readily
determined from σ 2

0 (t ) as

D �
∫ ∞

0
dti p(ti )σ

2
0 (ti)/2τ, (4)

where p(ti ) is the probability density of measurement at time
ti and τ = ∫ ∞

0 dtiti p(ti ) (details are given in Appendix D 2).
Since the HS model corresponds to a Poisson process for the
measurement collapses [43], p(ti ) = e−ti/τφ /τφ . From σ 2

0 (t )
obtained in the absence of dephasing and integrating nu-
merically Eq. (4), we obtain results in excellent agreement
with numerical data [see black curves in Fig. 1(c)]. In Ap-
pendix D 3 we use formalism to derive analytical expressions
for D in the HHAA model at the low and strong decoherence
limits; these results are consistent with the expressions derived
in Refs. [13,28]. Additionally, from Eq. (4), assuming a diffu-
sive dynamics in the absence of dephasing σ 2

0 (t ) = 2D0t , we
can get immediately that D = D0, i.e., it is independent of γφ .

C. Loschmidt echo or purity decay in the HHAA model

The robustness of the wave-packet spreading at the MIT
leads to the question of how the hidden decoherent processes
could be unraveled from a diffusive behavior. The natural
answer appears by studying how reversibility is affected by
decoherence. A coherent diffusive dynamics can be reversed
by changing the sign of the Hamiltonian, but the presence
of the environment destroys the coherence that allows a per-
fect reversibility. This can be experimentally studied through
the decay of the Loschmidt echo or purity [47,48]. Purity
M(t ) = Tr[ρ(t )2] has been widely used to measure how de-
coherence affects a system since M(t ) ≡ 1 for a pure state
while M(t ) < 1 for a mixed state. The Loschmidt echo (LE)
results from reverting the Hamiltonian part of a dynamics
at a time tR through the change in the overall sign of the
Hamiltonian while the environmental noise is kept active. The
return probability to the initial state P00(t ) tends to show a
revival at 2tR. In Appendix G we show that both definitions,
purity and LE, are indeed equivalent, i.e., P00(2tR) = M(tR).
This allows an efficient computation using the quantum-drift
method.

Figure 2(a) shows the probability of finding the excita-
tion in the initial site P00(t ) as a function of total evolution
time for different values of γφ ; the excitation evolves with L
[see Eq. (2)] until time τR (first vertical dashed line) when the
sign of the Hamiltonian is inverted, i.e., for t > tR it continues
evolving with L†. The Loschmidt echo occurs at P00(t =
2τR) ≡ M(t = τR) (second vertical dashed line). However, for
strong decoherence the echo is missed among the statistical
fluctuations. In this case the value at t = 2τR is mainly deter-
mined by a forward dynamics P00(t ) ∼ 1/

√
4πDt .

Figure 2(b) shows the LE or purity M(t ) as a function of
time. For t � 4h̄/γφ the initial exponential LE or purity decay,
characterized by the decoherence rate 2γφ , becomes a power
law determined only by the diffusion coefficient: M(t ) ∼
1/

√
8πDt . This regime is a consequence of the impossibility
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FIG. 2. (a) Probability of finding the excitation in the initial site
P00(t ) for a HHAA chain for a system evolving with L until time
τR = 25 (first vertical dashed line) when the sign of the Hamiltonian
is inverted, i.e., it continues evolving with L†. The Loschmidt echo
occurs at P00(t = 2τR ) ≡ M(t = τR ) (second vertical dashed line)
and corresponds to the purity. Different colors distinguish decoher-
ence strengths. For the stronger ones the echo is not evident and
P00(t ) approaches a diffusive dynamics (black curve). (b) Loschmidt
echo decay M(t ) for different γφ at the critical point computed
with the QD method. The dashed line is a prediction based on the
coherent diffusion coefficient resulting from the Hamiltonian dynam-
ics. Vertical dotted lines show t = 4h̄

γφ
. All data were obtained with

q = (
√

5 − 1)/2, J = 1, h̄ = 1, W = 2J , and N = 1000.

of reverting the spreading of the excitation beyond a timescale
2h̄/γφ . Thus the LE decay only senses the spreading
dynamics, which for W = 2J is robust against decoherence.
For much stronger decoherence strengths (γφ � γ c

φ ) D is in
the quantum Zeno regime generating a slow decay in the
purity according to D ∝ 1/γφ .

All the above results could be experimentally tested in Yb
cold atoms in a 1D optical lattice where the HHAA model has
already been implemented [38,49]. Local decoherence could
be imposed by time-dependent white-noise fluctuations that
exploit speckle patterns uncorrelated in time and space.

III. STABILITY OF QUANTUM DIFFUSION:
THE FIBONACCI AND PBRM MODELS

In order to understand whether the robustness found in the
HHAA model at criticality is due to the presence of a critical
point or to the presence of a diffusive dynamics, we also study
two other models: the Fibonacci chain [40,44,50], where there
is no MIT but transport changes smoothly from superdiffusive
to subdiffusive as the strength of the on-site potential is var-
ied, and the PBRM model [19], which presents a MIT and
a diffusive second moment in a finite range of parameters
around the MIT (see Appendix F). Since the latter model
incorporates topologically different Feynman pathways, it is
often considered a higher-than-1D system.

The Fibonacci model [50] is described by the Hamilto-
nian (1), with on-site energies alternating between two values
as in binary alloy models: εn = W ((n + 1)q2

g� − nq2
g�),

where · · · � is the integer part. This model has no phase
transition and the variance of an initial localized excita-
tion grows in time as σ 2

0 (t ) ∝ tα , where 0 < α < 2 depends
continuously on the on-site potential strength [51,52]. In
contrast, the Hamiltonian matrix elements for the PBRM

model are taken from a normal distribution with zero mean
and variance 〈|Hi j |2〉 = 1/[2 + 2(|i − j|/b)2μ] if i �= j and
〈|Hii|2〉 = 1 for on-site energies. The model has a critical
interaction range (μ = 1), characterized by a multifractal na-
ture [53–55], for all values of b where the system switches
from extended (μ < 1) to localized (μ > 1) eigenstates [19].
Nevertheless, small values of b allow us to study the dynam-
ics without resorting to unmanageable large systems. In this
model, we find a diffusive excitation spreading in the absence
of decoherence, not only at the critical point but in a much
broader range of μ values 1

2 < μ < 3
2 . Note that even for

1 � μ � 3
2 , the saturation value of the variance grows with

the system size, thus allowing a diffusivelike spreading in the
infinite-size limit (see Appendix F). This sounds counterintu-
itive since for 1 � μ � 3

2 we are in the localized regime if the
participation ratio of the eigenstates is used as a figure of merit
for localization [19]. This peculiarity is due to the long-range
hopping present in this model.

Universal stability towards decoherence

As we discussed below Eq. (4), if the coherent dynamics
is diffusive at all times, then D = D0 for all decoherence
strengths. On the other hand, in the more realistic case, where
an initial ballistic dynamics σ 2

0 (t ) = v2
0t2 for t < τW is fol-

lowed by a diffusive spreading σ 2
0 (t ) = 2D0t , Eq. (4) yields

(see details in Appendix D 2)

D(x)/D0 = [2/x − (1 + 2/x)e−x], (5)

where x = τW /τφ . This expression captures the dependence of
D on large and small values of τW /τφ . For τW /τφ � 1, the dif-
fusion coefficient D ≈ D0[1− 1

6 ( τW
τφ

)2], while for τW /τφ �1,
we enter the strong quantum Zeno regime and D/D0 ≈
2τφ/τW .

Equation (5) represents our main result. As one can see,
it depends only on a single parameter, i.e., the ratio between
the mean elastic scattering time and the decoherence time.
Thus, it describes universally any 1D quantum-mechanical
model characterized by a coherent diffusive dynamics, inde-
pendently of the details of their microscopic dynamics. Our
analytical results are confirmed numerically in Fig. 3, where
the normalized diffusion coefficient D/D0 is shown for the
HHAA, Fibonacci, and PBRM models, focusing only on the
diffusivelike coherent dynamics regime, where D0 is well
defined. The universal behavior predicted by Eq. (5) is in
excellent agreement with the numerical results for all models.

The fact that a coherent diffusive quantum dynamics is
extremely robust to the environmental noise is in striking con-
trast with what one would expect considering scattering (with
a timescale τW ) and environmental noise (with a timescale τφ)
as two independent Poisson processes. In this case, the two
processes can be thought of as a single Poisson process with
a timescale 1/τ = 1/τW + 1/τφ . Thus, for small values of
τW /τφ � 1, we have D ≈ D0(1 − τW /τφ ), in contrast with the
quadratic correction present in Eq. (5). Our findings are also
in contrast with standard results in classical systems where
the diffusion coefficient for the dynamics in the presence of
external noise is the sum of the diffusion coefficients given by
the two processes [56].
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FIG. 3. Normalized diffusion coefficient D/D0 vs renormalized
decoherence strength τW /τφ [D0 = D(γφ = 0)]. Symbols represent
results obtained from QD dynamics for the HHAA chain at criticality
(closed red squares); the Fibonacci chain (closed dark red triangles);
and the PBRM model in the extended phase (open green diamonds),
at the critical point (open red squares), and in the localized phase
(open blue circles). The solid curve is the universal Eq. (5) while the
black dashed line is the limit of τW /τφ > 2. The horizontal dotted
line is D = D0. For the HHAA and the Fibonacci chains, τW and D0

were computed analytically [Eq. (3)]. For the PBRM model b = 0.01
and D0 results are from a fitted τW .

IV. DISCUSSION

By studying quantum transport in three paradigmatic 1D
models, all of them able to support a quantum diffusivelike
regime, we found a striking stability of transport towards local
decoherent processes which also shows up in the purity or
Loschmidt echo decay. This stability originates in the diffu-
sive nature of the coherent quantum dynamics and it manifests
in the fact that the diffusion coefficient is largely independent
of the decoherence strength, i.e., approximately equal to the
diffusion coefficient in the absence of decoherence, as long
as the decoherence time is longer than the mean elastic scat-
tering time. Moreover, in the coherent diffusive regime, we
analytically derived a universal law in which the diffusion
coefficient depends on a single parameter: the ratio between
these characteristic times. We stress that this stability does
not show up when a sample is in a ballistic or in a localized
regime, where the diffusion coefficient is highly sensitive to
decoherence.

We expect that our results will be valid in many realistic
situations, even beyond 1D systems. In many quasi-1D sys-
tems, as occurs in the PBRM model, the elastic mean-free
path may become much larger than the localization length [2]
and thus the diffusionlike regime would occur in a wide range
of parameters. Therefore, even when coherent diffusion only
occurs within a limited length scale, it could be enough to
ensure an efficient and stable transport under environmental
noise.

Apart from the cold atomic setup where our findings could
be verified as explained above [38,49], another situation that
fits the above condition is the spreading of nuclear spin
excitations in quasi-1D crystals [57]. There the natural dipolar
long-range interactions and the disorder can be turned on
and off through appropriate radio-frequency pulses enabling

a switch between ballistic and quantum diffusive regimes.
Notably, the many-body terms manifest as a decoherence
timescale [37,58]. Further experiments could test the stability
of the spin diffusion towards decoherence. Moreover, some
actual conducting polymer composites, arranged in bundles
with degenerate active channels, may be in the stability regime
discussed here [59].

Our predictions may also inspire studies of quasi-1D bi-
ological systems where robust charge or excitonic transport
is functionally relevant. Among these are energy transfer and
self-repair of the helical DNA structures [60,61], which hint at
the crucial role of excitation propagation [62] in the puzzling
mechanism through which DNA transmits allosteric signals
over long distances [63]. Essential in photosynthetic systems
is an efficient energy transport from the antenna complex to
the reaction center followed by a temperature-independent
electron transfer from a chlorophyll to a distant quinone. This
elicits the long-standing question of whether electron transfer
occurs as a coherent process through conduction bands or
through multiple decoherent tunneling hops between local-
ized states [64,65]. Our decoherent diffusion is an alternative
mechanism that deserves further study. In the antenna com-
plex itself, there is a convergence of energy scales, i.e., the
couplings, disorder, and thermal fluctuations are roughly of
the same order, which could ensure the universally robust
regime we discussed. Moreover, the analysis of the spectral
statistics of several biologically relevant molecules suggests
that they are typically at the border between a ballistic and
a localized regime [3]. Indeed, some proteins, microtubules,
and RNA [11,14,66,67] show a surprisingly robust transport
against temperature-induced decoherence [68,69].

In summary, we give a new light to the hypothesis, pro-
moted for biological systems [32,33], that being at the edge
of chaos is favorable to charge or excitonic transport. Indeed,
chaos can lead to diffusion [70] and hence to a quantum dy-
namics extremely robust with respect to environmental noise.
In perspective, it would be interesting to analyze further sig-
natures of intrinsic quantum diffusion in realistic biological
systems in order to establish the functional relevance of our
findings. We conjecture that quantum diffusion is a most rele-
vant feature of nature’s poised realm.
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APPENDIX A: CURRENT

In this section we study the steady-state current through
the HHAA model in the presence of pumping and draining of
excitation from the opposite edges of the chain, in the pres-
ence of dephasing. We also derive an approximate expression
of the current as a function of the diffusion coefficient.

To generate a current, excitations are incoherently pumped
and drained at the chain edges. This is modeled by includ-
ing additional terms in the Lindblad master Eq. (2), which
becomes

ρ̇ = L[ρ] = − i

h̄
[H, ρ] + Lφ[ρ] + Lp[ρ] + Ld [ρ], (A1)

where H is the HHAA Hamiltonian (1) from the main text,
Lφ = − γφ

2h̄

∑N
n=1[|n〉 〈n| , [|n〉 〈n| , ρ]] is the dephasing dissi-

pator from the main text, and the additional terms

Lp[ρ] = γp

h̄

(
|1〉 〈0| ρ |0〉 〈1| − 1

2
|0〉 〈0| ρ − 1

2ρ |0〉 〈0|
)
(A2)

and

Ld [ρ] = γd

h̄

(
|0〉 〈N | ρ |N〉 〈0| − 1

2
|N〉 〈N | ρ − 1

2ρ |N〉 〈N |
)

(A3)

are two operators modeling the pumping on the first site |1〉
and draining from the last site |N〉. Here |0〉 is the vacuum
state, where no excitation is present in the system [9,71].
For simplicity, here the pumping and draining rates are set
to be equal in magnitude (γp = γd ). From solving Eq. (A1) at
the steady state. L[ρSS] = 0, we can compute the stationary
current

ISS = γd

h̄
〈N | ρSS |N〉 , (A4)

with ρSS the steady-state density operator [9,71].

1. Steady-state current: Average transfer time method

Since the master-equation approach discussed above is nu-
merically expensive, for large N we use the average transfer
time (ATT) method, as described in [9]. The average transfer
time τ is defined as

τ = γd

h̄

∫ ∞

0
t 〈N | exp(−Lefft )ρ(0)|N〉 dt

= γd

h̄
〈N |L−2

eff ρ(0)|N〉 , (A5)

where Leff is as in Eq. (A1) without pumping. In [9] it was
proved that the steady-state current determined from the mas-
ter Eq. (A1) in the absence of dephasing depends only on the
average transfer time, namely,

ISS = γp

γpτ + h̄
. (A6)

We have numerically verified that Eq. (A6) is valid also in
the presence of dephasing, so in the following we use it due
to its lower numerical complexity together with a heuristic
construction, detailed here below.

FIG. 4. (a) Steady-state current vs γφ/ j for the HHAA model
for N = 100 and W = 2J obtained with three different methods: the
master equation [green (light gray) curve], the average transfer time
method (red circles), and the heuristic expression (A7) [blue (dark
gray) curve]. (b) Rescaled steady-state current ISSN2 as a function
of dephasing (γφ/J) in the extended, critical, and localized (colors)
regime for different system’s sizes N = {20, 40, 100}. The ISSN2

is calculated using the ME method and shown with different line
types depending on N . The diffusion-coefficient-based (heuristic)
estimation of the current for N = 1000 is shown with yellow (light
gray) dash–double-dotted curves.

a. Heuristic construction of the mean transfer time

The ATT method gives us the possibility to heuristically
construct the mean transfer time by considering the character-
istic times of dephasing-induced diffusion and draining. Since
at equilibrium the probability of being at site N is 1/N and
the drain rate is γd/h̄, we can estimate the drainage time as
h̄N/γd . Then, in order to determine the diffusion time, we
know that an excitation moves from one site to a neighbor with
an average time a2/2D. Furthermore, the excitation moves as
a random walk and the total number of steps required in one
dimension is N (N − 1). Therefore, we estimate the diffusion
time as N (N − 1)a2/2D [72,73]. Thus, adding the drainage
time and the diffusion time we have

τ = h̄
N

γd
+ (N − 1)N

2D
a2. (A7)

Figure 4(a) shows a comparison of ISS as a function of de-
phasing computed using the three different methods illustrated
above: the stationary solution of the master equation (ME)
(A1), the ATT method (A5) and (A6), and the heuristic for-
mula (A7). In the latter case, the diffusion coefficient D has
been computed using the Green-Kubo approach [Eq. (D2),
Appendix D 1]. Generally good agreement is observed be-
tween the three approaches. Deviations at low dephasing are
due to the finite system size (N = 100), for which the excita-
tion reaches the chain edge ballistically within a time shorter
than τφ = h̄/γφ .

Figure 4(b) shows the normalized steady-state current
N2ISS as a function of γφ for different N in the three regimes
for the HHAA model described in the main text. We observe
that, as the length N of the chain is increased, the behav-
ior of the current is determined by the diffusion coefficient
(A7) [see yellow (light gray) curves in Fig. 4(b)], where
D has been computed analytically for W = 0 [Eq. (D17)]
and numerically via the quantum drift approach for W �= 0
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FIG. 5. Spreading of excitation for the HHAA model. The initial state is at a single site in the middle of the chain. Solid curves show the
results of the pure dephasing Haken-Strobl model from a Lindbladian evolution (ME). Dashed curves show the results of the quantum-drift
simulation. Colors and line types indicate different γφ for the ME and QD data, respectively. The parameters are N = 100 and (a) W = 0,
(b) W = 2J , and (c) W = 20J .

and N = 1000 (see Appendix B). The current decreases
with dephasing in the extended regime (W = 0) and it is
enhanced in the localized regime (W = 3J , up to an opti-
mal dephasing), while it remains almost unaffected at the
critical point (W = 2J) up to a characteristic dephasing
strength.

Although this analysis is done for the HHAA model, it
should also be valid for other models with nearest-neighbor
couplings, such as the Fibonacci chain analyzed in this paper.
In other words, we expect that the steady-state current is
mostly determined by the diffusion coefficient in such sys-
tems.

APPENDIX B: QUANTUM DRIFT MODEL

In order to reduce the computational cost of calculation of
the dynamics in the presence of decoherence we use the QD
model, which only involves Trotter-Suzuki evolution of the
wave vector [43,74] under uncorrelated local noise. Here the
dynamics is obtained by the sequential application of unitary
evolution operators to the wave function in small time steps
dt . The noise or decoherence (interaction with the environ-
ment) is introduced by adding stochastic energies fluctuations
on every site, �φ = ∑

n βn |n〉 〈n|, uncorrelated in time, i.e.,
independently sampled every time step. The probability dis-
tribution of these fluctuations is a Lorentzian function

P(βn) = 1

π

γφ

2

β2
n + ( γφ

2

)2 . (B1)

Thus, the unitary evolution in a small time step dt is

U (dt ) ≈ ei�φdt/h̄e−iHdt/h̄, (B2)

where H is the system’s Hamiltonian. Finally, the evolved
wave function at time t = Nt dt is

|ψ (t )〉 =
Nt∏
j=1

ei�φdt/h̄e−iHdt/h̄|ψ (0)〉. (B3)

The QD evolution described here is equivalent to the Haken-
Strobl dephasing [Eq. (2)] (see Fig. 5). As one can see,
there is very good agreement between the Lindbladian and
the QD evolution of the second moment of an initially lo-
cal excitation for different dephasing strengths and system
parameters.

APPENDIX C: THE HHAA MODEL: DYNAMICS
IN THE ABSENCE OF DEPHASING

Here we study the spreading of an initially localized wave
packet at the center of the HHAA chain in the absence of
dephasing. In particular, we focus on the time evolution of
the second moment σ 2

0 of the probability distribution to find
the particle along the chain in the absence of decoherence. As
shown in the main text, in the absence of decoherence and
for long enough times, the second moment grows ballistically
for W < 2J , grows diffusively for W = 2J , and saturates for
W > 2J [45].

It is known that, in the HHAA, in the localized regime the
localization length of all eigenfunctions is 2ξ = a/ln(W/2J )
[16,44,45]. It follows that the wave-packet probability dis-
tribution at the steady state is localized close to a site
n0, P(n) = |〈n|ψ (t )〉|2 = 1

2ξ
(e−|n−n0|/ξ ). Therefore, the vari-

ance’s saturation value will be limt→∞ σ 2
0 (t ) = l2 = 2ξ 2 =

2a2[2 ln(W/2J )]−2. In the following we characterize the dy-
namics in the different regimes.

1. Extended phase

In the extended phase, the dynamics of the variance for
very long times becomes ballistic, σ 2

0 (t ) = u2t2. From the
Hamiltonian (1) in the cases q = 0 (ordered chain) and q = 1

2
(dimerized chain) we have proved analytically (not shown)
that the velocity u is directly connected with the support B
of the spectral bands and we have u2 = a2B2

8h̄2 . For q = 0 there

is a single band B = 4J and for q = 1
2 we have two bands,

with B = 2
√

W 2 + 4J2 − 2
√

W 2.
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We conjecture here that the same expression is valid for
any value of q in the HHAA model. For q given by the golden
mean, in Ref. [75] it was shown that B = 2|2J − W |. Thus we
have u2 = 4a2|2J − W |2 and the behavior of the variance for
long times is given by

σ 2
0 (t ) = a2|2J − W |2

2h̄2 t2.

These results are confirmed numerically in Fig. 1(b).

2. Critical point

Here we analytically estimate the diffusion coefficient in
the absence of decoherence. We calculate the spreading of the
wave packet ψ (t ) perturbatively for short times (before the
scattering due to the site potential enters in the dynamics), so
the probability to be at site n at time t is Pn(t ) = |〈n|ψ (t )〉|2 �
|〈n| (1 − iHt/h̄) |n0〉|2, where n0 is the site where the ex-
citation is localized initially. Defining Hn,n0 = 〈n|H |n0〉
and considering without loss of generality n0 = 0, we
can write

σ 2
0 (t ) = a2

∑
n

Pn(t )n2 − a2

(∑
n

Pn(t )n

)2

(C1)

≈ (t/h̄)2a2
∑

n

H2
n,0n2 − a2(t/h̄)4

∑
n

H4
n,0n2 (C2)

≈ (t/h̄)2a2
∑

n

H2
n,0n2 = v2

0t2, (C3)

from which we find

v2
0 = 2a2(J/h̄)2 (C4)

for the HHAA model since there are only nearest-neighbors
interactions.

We may define a timescale where the initial ballis-
tic spreading ends due to the presence of a quasiperi-
odic site potential of magnitude W . To see this effect,
the perturbation expansion needs to be carried out to
the fourth order: Pn(t ) = |〈n|ψ (t )〉|2 � |〈n| (1 − iHt/h̄ −
1
2H2t2/h̄ − i 1

6H3t3/h̄ + 1
24H4t4/h̄) |n0〉|2. Thus, to this level

of approximation we have

σ 2
0 (t )/a2 ≈ 2J2(t/h̄)2 − 1

12 [(H0,0 − H1,1)2

+ (H0,0 − H−1,−1)2]J2(t/h̄)4,

σ 2
0 (t )/a2 ≈ 2J2(t/h̄)2 − 2

12 〈(Hn,n − Hn+1,n+1)2〉J2(t/h̄)4,

where the energy differences squared were replaced by the
average value

(�E )2 = 〈(Hn,n − Hn+1,n+1)2〉

= 1

N − 1

N−1∑
n=1

(Hn,n − Hn+1,n+1)2

2
. (C5)

This definition takes into account the correlation between
neighbors. For the HHAA model the average can be
taken over the sites n or the realizations of the potential
[phase θ in Eq. (1)]. Independent random disorder (Ander-
son disorder) yields directly the variance of the disorder

[(�E )2 = 1
N−1

∑N−1
n=1 H2

n,n], which is the standard magnitude
to calculate the disorder timescale.

The first effect of this quartic correction is to change the
concavity of σ 2

0 (t ). This will happen when the second deriva-
tive of σ 2

0 (t )/a2 vanishes at a time τW so that

τW =
√( 〈(Hn,n − Hn+1,n+1)2〉

2h̄2

)−1

= h̄

�E
. (C6)

By replacing with the HHAA site energies, using trigonomet-
ric identities, and summing over the sites, it can be shown that
�E = W

√
[1 − cos(2πq)]/2 and we have

τW =
√

2h̄

W
√

1 − cos(2πq)
. (C7)

Then the diffusion coefficient in the absence of dephasing D0

can be computed as follows:

D0 = v2
0τW

2
= a2J2

h̄

√
2

W
√

1 − cos(2πq)
. (C8)

It is interesting to note how the correlations of the model
(given by the modulation wave vector q) influence the scatter-
ing times and therefore the diffusion σ 2

0 (t ) = 2D0t = v2
0τW t .

Note that here the potential strength enters with a different
power law than in the mean-free time between collisions
that results from the application of the Fermi golden rule
to a Bloch state of energy ε for the uncorrelated disorder
of Anderson’s model [26] 1/τFGR = (2π/h̄)(W 2/12)N1(ε),
with N1(ε) ∝ 1/4πJ

√
1 − (ε/2J )2 the density of directly

connected states.

APPENDIX D: DIFFUSION COEFFICIENT
IN THE PRESENCE OF DECOHERENCE

1. Green-Kubo formula

The diffusion coefficient D in the presence of decoherence
for the Haken-Strobl model can be computed from the Green-
Kubo expression, using only the eigenenergies and eigenstates
of the Hamiltonian

Hφμ = εμφμ (D1)

as it has been derived in Ref. [13],

D(�u) = h̄

N

N∑
μ,ν=1

γφ

γ 2
φ + ω2

μ,ν

| ĵμ,ν (�u)|2, (D2)

where γφ is the dephasing strength, ωμ,ν = εμ − εν is the
energy difference between eigenstates μ and ν, and ĵμ,ν is the
flux operator in the eigenbasis

ĵν,μ(�u) = i

h̄

∑
n,m

(�u · �rn,m)φμ∗
n φν

mHn,m. (D3)

In the expression above, �u is a unit vector indicating the
transport direction, �rn,m is the vector connecting the positions
of sites n and m, φν

n is the amplitude of the ν eigenstate
at site n, and Hn,m = 〈n|H|m〉 is the coupling between n
and m sites. In our 1D system with nearest-neighbor interac-
tions, �u · �rn,m = m − n = ±a and Hn,m = J (δm,n+1 + δm,n−1).
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FIG. 6. Diffusion coefficient D/a2, calculated using the Green-Kubo approach [Eq. (D2)], vs γφ/J for the HHAA model with Haken-Stobl
dephasing for N = {40, 100, 1000, 4000} (yellow, green, red, and blue curves, respectively) and (a) W/J = 0 (metallic regime), (b) W/J = 2.0
(MIT regime), and (c) W/J = 20 (insulator regime). Vertical dashed lines indicate the values of γφ below which finite-size effects are relevant.
The dependence of this value on N is shown on top of the black arrow. (d) Diffusion coefficient D/a2 vs W/J for different γφ (see the legend).
Curves are calculated from Eq. (D2). Symbols show results obtained from the quantum-drift method (Appendix B). Here N = 1000.

Therefore,

ĵν,μ = i
Ja

h̄

∑
n

φμ∗
n

(
φν

n+1 − φν
n−1

)
. (D4)

Equation (D2) has been compared with numerical simula-
tions using the QD approach in Figs. 6(d) and 7–9. It also has
been used to study the dependence of the diffusion coefficient
in various models on N . Figure 6 shows the diffusion coeffi-
cient D of the HHAA model in the three regimes as a function
of the dephasing strength for different chain lengths N . We
observe for low dephasing a clear dependence of D on the
system size. This is due to the fact that when dephasing is low,
the excitation reaches the boundaries before diffusion can set
in. Defining the typical timescale for dephasing to affect the
dynamics as τφ = h̄

γφ
, we can estimate the dephasing strength

below which finite-size effects are relevant, by comparing
τφ with the time needed to reach ballistically the bound-
aries for the clean case (W = 0). The value of decoherence
strength below which finite-size effects start to be relevant
will decrease proportionally to 1/N in the ballistic regime
(W < 2J) and to 1/N2 in the diffusive regime (W = 2J) [see
vertical dashed lines in Figs. 6(a) and 6(b)]. In the localized
regime finite-size effects are negligible if the system size is
larger than the localization length. Figure 6(d) shows D vs the
on-site potential strength for different decoherence strengths;
curves are calculated using the Green-Kubo approach while
symbols are obtained from the quantum-drift dynamics (Ap-
pendix B). As one can see, all curves intersect at W =
2J , suggesting the independence of decoherence precisely at
the MIT.

FIG. 7. Diffusion coefficient vs the decoherence strength for the HHAA model. Symbols represent data obtained from the time evolution,
dotted curves from Eq. (D2) (Green-Kubo expression), dash-dotted colored curves from Eq. (D16) (δ process), and black solid curves from
Eq. (D8) (Poisson process). Also shown is the diffusion coefficient in the strong dephasing regime (black dashed line) and the diffusion
coefficient in the absence of dephasing at the MIT (D0) as a horizontal dotted line [see Eq. (C8)]. The yellow solid curve corresponds to
Eq. (D12). (b) is the same as (a) but in lin-log scale and excluding the extended regime data.
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FIG. 8. Diffusion coefficient vs decoherence strength for the HHAA model. Symbols represent data obtained from the QD time evolution,
dotted curves results from the Green-Kubo formula, and dashed lines the analytical estimations. (a) Extended phase. The analytical results
correspond to Eq. (D18) (black dashed lines). (b) Localized phase. The analytical results correspond to Eq. (D21) (black dashed lines). The
parameters are N = 1000, Q = (

√
5 − 1)/2, J = 1, and h̄ = 1.

2. Analytical expression of the diffusion coefficient
from the coherent dynamics

The presence of the Haken-Strobl dephasing can be
thought as the system being measured by the environment
[43,76]. This measurement occurs at random times, where
the times between subsequent measurements are distributed as
p(t ) = e−t/τφ /τφ , with τφ = h̄/γφ . In this section we employ
this interpretation of the Haken-Strobl dephasing to obtain
analytical expressions for the diffusion coefficient.

When the measurement occurs, the system has a proba-
bility distribution of being at the position r, P0(r, t, r0, t0),
determined by the coherent Hamiltonian dynamics. The initial
position r0 at t0 will only define the center of the probability
density, since the system is isotropic. This assumption is
valid in the three models treated in this work unless the
excitation is close to the boundaries. Consequently,
P0(r, t, r0, t0) = P0(r − r0, t − t0, 0, 0). For simplicity, we
consider r0 = 0 and t0 = 0.

The probability density of measuring the system at site r at
time t once the measurement process is included [P̃(r, t, 0, 0)]
will be determined by the integral equation

P̃(r, t, 0, 0) = P0(r, t, 0, 0)

(
1 −

∫ t

0
p(ti )dti

)
︸ ︷︷ ︸

no measurement

+
∫

dri

∫ t

0
dti p(ti )P̃(r, t, ri, ti )P0(ri, ti, 0, 0)︸ ︷︷ ︸

measurement at (ti,ri )

,

(D5)

which recurrently considers the probability of not being mea-
sured and of being measured several times. To directly analyze
the second moment of the distribution, we multiply by r2 and

integrate over r on both sides,

σ 2(t ) = σ 2
0 (t )

(
1 −

∫ t

0
p(ti )dti

)
+

∫
dri

∫ t

0
dti p(ti )

×
∫

dr P̃(r, t, ri, ti )r
2

︸ ︷︷ ︸
r2

i +σ 2(t−ti )

P0(ri, ti, 0, 0), (D6)

σ 2(t ) = σ 2
0 (t )

(
1 −

∫ t

0
p(ti )dti

)
+

∫ t

0
dti p(ti )σ

2
0 (ti )

+
∫ t

0
dti p(ti )σ

2(t − ti ), (D7)

where we have used the independence of the probabilities
from the initial site and time.

It can be shown by the Laplace transform in Eq. (D7)
(Appendix D 2 a) that for well-behaved p(t ) and σ 2

0 (t ) (triv-
ially fulfilled in the systems we consider), the dynamics of
the variance σ 2(t ) becomes diffusive at long enough times.
Therefore, in the long-time limit t → ∞ we have

σ 2(t ) � 2Dt,(
1 −

∫ t

0
p(ti )dti

)
� 0,

∫ t

0
dti p(ti )ti � τφ,

and

D =
∫ ∞

0 dti p(ti )σ 2
0 (ti )

2τφ

. (D8)

Then if σ 2
0 (t ) = 2D0t ∀ t the measurement process does not

affect the diffusion coefficient

D = 2D0

∫ ∞
0 p(ti )tidti

2τφ

= D0. (D9)
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FIG. 9. Time evolution of the spreading of an excitation in a HHAA chain with q = qg/m at criticality for (a) γφ = 0 and (b) γφ = 0.02.
The vertical dashed lines show τW [Eq. (C7)], the crosswise dashed lines correspond to σ 2(t ) = 2D0t [Eq. (C8)], and the dotted line shows
the initial ballistic evolution [Eq. (C3)]. (c) Diffusion coefficient as a function of the dephasing strength γφ . Here D is calculated from the QD
dynamics (symbols) and from Eq. (D2) (dashed lines). The horizontal dotted lines show D0 [Eq. (C8)] and the vertical dashed lines γ c

φ = 2h̄
τW

.
(d) Diffusion coefficient and dephasing strength are rescaled by D0 and γ c

φ , respectively. Colors represent different values of m as indicated in
the legends. The parameters are N = 10 000 and W = 2J .

Another physically relevant case is when the dynamics is
initially ballistic up to some time τW followed by a diffusive
dynamics

σ 2
0 (t ) =

{
v2

0t2 if t < τW

2D0t if t > τW ,
(D10)

with D0 = v2
0τW

2 and

D = 1

2τφ

(∫ τW

0

2D0

τW
t2 p(t )dt +

∫ ∞

τW

2D0t p(t )dt

)
. (D11)

Considering a Poisson process for the measurements p(t ) =
e−t/τφ

τφ
, we have

D(τφ ) = D0

[
2τφ

τW
−

(
1 + 2τφ

τW

)
e−τW /τφ

]
. (D12)

This expression captures the dependence of D for large and
small values of τ so that D ≈ D0[1 − 1

6 ( τW
τφ

)2] and D ≈ v2
0τφ ,

respectively. Note that considering a process pδ (t ) = δ(t −
2τφ ) would yield D̃ = v2

0τW = D0 for τφ > τW /2 and D̃ =
v2

02τφ = D02τφ/τW for τφ < τW /2.

a. Analytical solution for the spreading

In this section we show that Eq. (D7) for p(t ) = e−t/τφ /τφ

generates a diffusive dynamics at long times and find analyt-
ical solutions in some paradigmatic cases. Equation (D7) can
be rearranged in the form

σ 2(t ) = f (t ) +
∫ t

0
dti p(ti )σ

2(t − ti ) (D13)

by noting that 1 − ∫ t
0 p(t )dt = e−t/τφ = τφ p(t ) and defining

f (t ) = τφg(t ) + ∫ t
0 dtig(ti ), with g(t ) = σ 2

0 (t )p(t ).
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The usual strategy to solve this type of equation is to use
the Laplace transform in the equation

σ 2
LT(s) = F (s) + σ 2

LT(s)P (s),

where σ 2
LT(s), F (s), and P (s) = 1

sτφ+1 are the Laplace trans-

forms of σ 2(t ), f (t ), and p(t ), respectively. Identifying G(s)
as the Laplace transform of g(t ), we have F (s) = G(s)( sτφ+1

s )
and

σ 2
LT(s) = F (s)

1 − P (s)
= G(s)τφ

(sτφ + 1)2

(sτφ )2

= G(s)τφ

(
1

(sτφ )2
+ 2

sτφ

+ 1

)
. (D14)

Since the Laplace transform of t nu(t ), where u(t ) is the step
function, is n!

sn+1 , we observe that σ 2(t ) will be diffusive in
the long-time limit if G(0) is finite and nonzero, a condition
trivially fulfilled in the systems under consideration. In this

case, D = G(0)
2τφ

=
∫ ∞

0 σ 2
0 (t )p(t )dt
2τφ

, as we found in Eq. (D8).

The inverse transform of σ 2
LT(s) can be carried out in

several cases, for example, σ 2
0 (t ) = Aαtα; however, here

we discuss only two paradigmatic cases σ 2
0 (t ) = 2D0t and

σ 2
0 (t ) = v2

0t2. In the first case, the diffusive spreading, we find
σ 2(t ) = 2D0t , i.e., the dynamics of σ 2

0 is not affected. In the
second case, the ballistic spreading, the solution is

σ 2(t ) = 2τφv2
0[τφ (e−t/τφ − 1) + t], (D15)

which for t � τφ , σ 2(t ) ≈ v2
0t2 maintains its ballistic behav-

ior but becomes diffusive for t � τφ , σ 2(t ) ≈ 2v2
0τφt = 2Dt .

The same expression is found when the spreading in an or-
dered tight-binding chain with Haken-Strobl decoherence is
addressed with the Lindblad formalism [28,77].

It is important to note that if one considers two Poisson pro-
cesses p1(t ) = e−t/τ1/τ1 and p2(t ) = e−t/τ2/τ2, the combined
effect will be equivalent to considering only one process with
p(t ) = e−t/τ /τ , with τ = τ1τ2

τ1+τ2
, the sum of inverse timescales.

This is the standard result in classical systems where one
considers a particle that moves with velocity v0 to the left or
right with the same probability after a scattering with either
of the two processes. The diffusion coefficient, in this case, is
D = v2

0τ = v2
0

τ1τ2
τ1+τ2

= D1
1

1+τ1/τ2
, which for τ2 � τ1 generates

a linear correction to the diffusion coefficient associated with
the process p1.

3. Analytical expression of the diffusion coefficient in the limit
of strong and weak decoherence

In this section we use Eq. (D8) and the specific dynamics
of σ 2

0 (t ) in the HHAA model (Appendix C) to obtain the
behavior of D in the limit of strong and weak dephasing.

We define the mean free path l from the expectation value
of the coherent spreading l2 = ∫ ∞

0 σ 2
0 (t )p(t )dt . We compare

it with a random-walk analysis of the diffusion coefficient
[78], which corresponds to a δ process where the system is
measured by the environment at equal times δt = 2h̄/γφ . The
diffusion coefficient is directly determined by the coherent

spreading at the dephasing time:

D = l2

2δt
=

σ 2
0

(
t = 2h̄

γφ

)
2 2h̄

γφ

. (D16)

This expression, however inaccurate, can be considered a first
approximation to the diffusion coefficient.

Figures 7 show the diffusion coefficient obtained from
the time evolution (symbols), Eq. (D2) (dotted curves),
Eq. (D16) (dash-dotted curves), and numerical integration of
Eq. (D8) (black solid curves). The yellow curve corresponds
to Eq. (D12). We observe that, using a Poisson process (D8),
we obtain smoother results than with a δ process (D16) (the
fluctuations produced by particular interferences are washed
out) and can be obtained at almost the same computational
cost.

a. Strong decoherence

For sufficiently high dephasing γφ � h̄/τW , the noise in-
terrupts the dynamics before the system notices if it is in an
extended, critical, or localized phase. This is known as the
strong Zeno regime. In this case, the measurement happens
during the initial ballistic dynamics, where the variance grows
as σ 2

0 (t ) = 2a2 J2

h̄2 t2. Therefore, the dynamics corresponds to a

random walk with a mean free path l2 = 2a2 J2

h̄2 δt2 and a mean

free time δt = 2h̄
γφ

. Thus, the diffusion coefficient is

D = 1

2

2a2J2

(γφ/2)2

γφ

2h̄
= 2a2J2

h̄γφ

. (D17)

The same result is obtained with the Poisson process
p(t ) = e−t/τφ /τφ . This result is valid for all γφ for an infinite
clean chain (W = 0) [77], since in that case τW → ∞. Note
that Eq. (D17) is also valid in the presence of correlated noise,
e.g., binary and Gaussian processes, which has been shown to
involve only a renormalization of the decoherence strength for
short correlation times [43,79].

b. Extended phase (W < 2J)

For sufficiently low dephasing strength (depending on how
close we are to the MIT), the system enters the long-time
ballistic regime where σ 2

0 (t ) = a2|2J−W |2
2h̄2 t2, from which we

have

D = a2|2J − W |2
2h̄γφ

. (D18)

Note that as we approach the MIT our estimate is valid for
a lower and lower dephasing strength since the system enters
the ballistic regime at longer times. Using the Poisson process
p(t ) and Eq. (D8), we obtain the same results. In Fig. 8(a) we
compare the diffusion coefficient obtained from the numeri-
cal simulations (symbols) with the analytical approximation
(D18).

c. MIT (W = 2J)

At the critical point, for t > τW the dynamics is diffusive
and the variance is linearly dependent on the measure-
ment time σ 2

0 (δt ) = 2D0δt . Given that we have l2 = 2D0δt ,

042213-12



UNIVERSAL STABILITY OF COHERENTLY DIFFUSIVE … PHYSICAL REVIEW A 109, 042213 (2024)

provided γφ < 2h̄/τW , and D = l2/2δt , we obtain

D = 2D0δt

2δt
= D0, (D19)

i.e., a diffusion coefficient independent of the dephasing.
This was shown to be exact for an always diffusive dynam-

ics in Appendix D 2. On the other hand, when we consider a
ballistic dynamics for short times and a Poisson measurement
process, some corrections appear.

d. Localized phase (W > 2J)

For sufficiently low dephasing strength (depending on how
close we are to the MIT), the system gets localized with a
localization length ξ = l/

√
2 before dephasing sets in. So,

considering σ 2
0 = l2 in Eq. (D8), we have

σ 2(t ) = l2

τφ

t = l2 γφ

h̄
t = 2ξ 2 γφ

h̄
t . (D20)

This limit is also found in Ref. [13] from Eq. (D2). Since
in the HHAA model 2ξ 2 = 2a2[2 ln(W/2J )]−2, the diffusion
coefficient is

D = ξ 2γφ

h̄
= a2γφ

[2 ln(W/2J )]2h̄
. (D21)

The analytical result is shown in Fig. 8(b) compared with the
numerical results. We observe a small discrepancy with the
above formula, rooted in the fact that the numerically found
l2 is slightly smaller than the theoretical one.

Note that, in contrast with the other regimes, the δ and
Poisson processes do not yield the same expression (the use
of a δ process would underestimates the diffusion coefficient
by a factor of 2).

APPENDIX E: THE HHAA MODEL
WITH DIFFERENT VALUES OF q

The diffusion coefficient derived for the critical point in
the absence of dephasing [Eq. (C8)] shows a dependence on
q. In order to check the validity of our analytical prediction
and the generality of the dephasing-independent regime, we
analyze other irrational values of q, beyond the golden mean
value used in the main text.

In particular, we study the dynamics of the system using
fractions of the golden ratio as irrational numbers q = qg/m,
where m is an integer power of 2. The continued fractions
of the irrationals used are presented in Table I. Trials with
irrational numbers of the form [0, {m}] yield similar results.

The spreading in time of the wave packet in the absence
and presence of dephasing together with our analytical esti-
mations for the diffusion coefficient is shown in Figs. 9(a) and
9(b). As one can see, the initial ballistic spreading [Eq. (C3)]
lasts until a time τW [Eq. (C7), indicated as vertical lines in
Figs. 9(a) and 9(b)]. After that time the dynamics is diffusive
with a diffusion coefficient given by Eq. (C8). We see in
Fig. 9(a) the presence of oscillations in the second moment
which increase as q decreases. These oscillations are partly
erased in the presence of dephasing at long times, as shown in
Fig. 9(b) for γφ = 0.02.

TABLE I. Continued fraction of the irrational used in this sec-
tion q = qg/m. The numbers between brackets are infinitely repeated
in the fraction.

Continued fraction
√

5−1
2 = [0, {1}] = 1

1+ 1
1+···

1
2

√
5−1
2 = [0, 3, {4}] = 1

3+ 1
4+ 1

4+···
1
4

√
5−1
2 = [0, 6, {2, 8}] = 1

6+ 1
2+ 1

8+ 1
2+···

1
8

√
5−1
2 = [0, 12, {1, 16}] = 1

12+ 1
1+ 1

16+ 1
1+···

Figure 9(c) shows the fitted values of D (symbols) together
with the D values obtained from Eq. (D2) (dashed curves) as
a function of γφ for different q at the MIT. As vertical dashed
lines we plot γ c

φ = 2h̄
τW

, which coincides with the beginning of
the strong dephasing regime, where the diffusion coefficient
decreases with dephasing. Note that for large values of m, the
diffusion coefficient D exhibits significant oscillations with
respect to γφ . This phenomenon arises from the observed
oscillations in the coherent dynamics [Eq. (D8)], likely due to
the weaker irrationality of the q value compared to qg. More
investigations should be done in the future to understand the
origin of these interesting oscillations. In Fig. 9(d) we plot
the diffusion coefficient rescaled by the theoretical value in the
absence of dephasing [Eq. (C8)] and γφ rescaled by the elastic
scattering rate γ c

φ = 2h̄
τW

. Figure 9(d) confirms the validity of
our analytical expressions of D and τW as a function of q.

APPENDIX F: PARADIGMATIC MODELS OF TRANSPORT

In this Appendix we test the validity of Eqs. (C6) and (D8)
using two models that present a coherent diffusion regime
and/or criticality: the Fibonacci chain and the PBRM model.

1. Fibonacci chain

The Fibonacci model is described by the Hamiltonian

H =
∑

n

J (|n〉 〈n + 1| + |n + 1〉 〈n|) + εn |n〉 〈n| , (F1)

where the on-site potential is determined by εn = W ((n +
1)q2

g� − nq2
g�); here x� represents the integer part of x and

qg =
√

5−1
2 is the golden ratio. In this potential, εn corre-

sponds to the nth element of the Fibonacci word sequence,
which can also be obtained by repeated concatenation:
0, 0W, 0W 0, 0W 00W, 0W 00W 0W 0, . . ..

The dynamics in the Fibonacci chain was studied in the
absence and presence of dephasing [51,52,80]. In the absence
of dephasing it is known that the second moment grows, after
the initial quadratic spreading, as a power law σ 2

0 (t ) ∝ tα

with an exponent that depends on the strength of the on-site
potential. It grows subdiffusively (α < 1) for W > 3.15J , dif-
fusively (α = 1) for W = 3.15J , and superdiffusively (α > 1)
for W < 3.15J . These dynamics are shown in Fig. 10(a).
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FIG. 10. (a) Time evolution of the spreading in the absence of dephasing for W = {1, 3.15, 5} in the Fibonacci chain (lime green, maroon,
and periwinkle solid curves, respectively). The black dotted line shows the initial ballistic spreading [Eq. (C3)], the vertical arrows show
τW [Eq. (C6)], and the black dashed lines show the power-law behavior after τW . (b) Diffusion coefficient as a function of the dephasing
strength. The symbols are fitted directly from the QD dynamics in the presence of dephasing, the black solid curves show Eq. (D8) numerically
integrated using a Poisson process, and the yellow (light gray) solid curves show the analytical expression (F3). The vertical arrows correspond
to 2h̄/τW , where the strong dephasing regime indicated by a black dotted line starts. The black dashed lines indicate the power dependence for
small γφ . The simulations were done for a chain of length N = 104.

This spreading can be written analytically in the approximated and simplified form

σ 2
0 (t ) =

{
v2

0t2 if t < τW

2Atα if t > τW ,
(F2)

with A = v2
0τ 2−α

W
2 . From this expression and using Eq. (D8) with a Poisson process, we obtain an analytical expression for the

diffusion coefficient in the presence of dephasing,

D =
v2

0

{
τ 3

W E−α

(
τW
τφ

) + ατφτ 2
W �(α)

[
τα
φ τ−α

W − (
τW
τφ

)−α] + 2τ 3
φ − τφe−τW /τφ

(
2τ 2

φ + 2τφτW + τ 2
W

)}
2τ 2

φ

, (F3)

where �(α) is the Euler Gamma function and E−α ( τW
τφ

) =∫ ∞
1 e−(τW /τφ )t tαdt .

The vertical lines in Fig. 10(a) represent τW , calculated
from the analytical Eqs. (C5) and (C6) yielding 1/τW =
qgW/h̄. After this time, the initial ballistic dynamics stops and
the algebraic dynamics starts. In particular, for W = 3.15J ,
when the subsequent dynamics is diffusive, we obtain D0 =
v2

0τW

2 . This analytical prediction is shown as a black dashed
line on top of the maroon (dark gray) curve.

Once dephasing is added, the dynamics becomes diffusive
for all values of W . The diffusion coefficient as a function
of the dephasing strength was computed numerically through
a quantum drift dynamics for different values of W . These
results are shown as symbols in Fig. 10(b). They are compared
with the numerical integration of Eq. (D8) using a Poisson
process (black curves) and the analytical expression (10)
[yellow (light gray) curves]. We conclude that the diffusion
coefficient depends only on the coherent dynamics and the
noise strength.

From Eqs. (D16) and (F3) it is clear that the dependence
of σ 2

0 (t ) determines the behavior of D(γφ ). In particular, if
σ 2

0 (t ) ∝ tα then D(γφ ) ∝ (γφ )(1−α) for γφ � 2h̄/τW . This de-
pendence is pointed out in Fig. 10(b) with black dashed lines
on top of the data. These results are consistent with recent
findings reported in Ref. [52].

2. The PBRM model

The power-law banded random matrix model describes
1D tight-binding chains of length N with long-range random
hoppings. This model is represented by N × N real symmetric
random matrices whose elements are statistically independent
random variables characterized by a normal distribution with
zero mean and variance given by

〈|Hii|2〉 = J2, 〈|Hi j |2〉 = J2 1

2

1

1 + (|i − j|/b)2μ
, (F4)

with i �= j.
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FIG. 11. (a) Time evolution of the spreading of an initially localized excitation in the absence of dephasing in the PBRM model for μ = 1,
b = 0.01, and N = {100, 1000, 5000, 10 000} (yellow, green, red, and blue curves, respectively). The vertical lines denote τW (black) and ts

(colored), while the crosswise dashed line represents the theoretical diffusive spreading σ 2
0 (t )/v2

0 ≈ √
2t . (b) Diffusion coefficient obtained

through Eq. (D2) for (from top to bottom) μ = {0.80, 1.00, 1.30} (colored curves). The vertical black dashed line marks the characteristic
dephasing where the dynamics start to be dominated by noise and the initial ballistic dynamics (strong Zeno regime). The vertical colored
dotted lines show the values of γφ = 2h̄/ts below which the finite-size effect starts to be relevant. The dependence of the values on N is
indicated in each plot.

The PBRM model (F4) depends on two control parameters
μ and b, while J is an energy scale that can be considered
equal to 1 for all practical purposes. For μ > 1 (μ < 1) the
PBRM model is in the insulating (metallic) phase, so its eigen-
states are localized (delocalized). At the MIT, which occurs
for all values of b at μ = 1, the eigenfunctions are known to
be multifractal.

The statistical properties of the eigenfunctions and
eigenvalues of this model have been widely studied
[19,53,54,81,82]. Here we study the spreading dynamics of
an initially localized excitation at the middle of the chain in
the absence and presence of a decoherent environment.

As in the previous systems, the initial spreading of the local
excitation is ballistic, where the second moment is given by
σ 2

0 = v2
0t2. Generalizing Eq. (C3) to account for the random-

ness of the Hamiltonian, we find that the velocity v0 is

v2
0 = 2

N/2∑
n=1

〈
H2

n,0

〉
n2 =

N/2∑
n=1

J2

1 + (n/b)2μ
n2, (F5)

where we summed over the sites to the right and left
(factor 2) of the initial site (denoted by 0). This initial velocity
(F5) diverges for μ < 3

2 at large N as N3−2μ. For large N ,
b � 1, and μ < 3

2 , the sum can approximated by an integral,

yielding v2
0 ≈ J2b2μ N3−2μ

(3−2μ)23−2μ .
This initial ballistic spreading lasts up to t = τW , which

should be addressed numerically since Eq. (C5) is only valid
for nearest-neighbor chains and a similar analysis with this
model does not yield a simple expression. However, in a
first approximation if we use Eq. (C5), with uncorrelated
and Gaussian-distributed site energies with 〈|Hii|2〉 = J2, we
obtain τW = 1.

For t > τW , we find numerically that for 0.5 < μ < 1.5
the second moment of the excitation spreads diffusively [see
Fig. 11(a) for μ = 1]. Note that the parameter b modifies the
initial velocity and the diffusion coefficient. Consequently, we

choose a small b = 0.01 to reduce both the magnitude of the
initial spread and the diffusion coefficient, generating a slower
dynamics and having a larger window for diffusive dynamics
before the system reaches saturation (at fix N). In the diffusive
regime, we find σ 2

0 ≈ v2
0 (

√
2τW )t . The factor

√
2 is introduced

based on the numerical results to correct the discrepancy in
τW due to the long-range hopping. We numerically explore
different values of b, spanning from 0.001 to 0.3, affirming
the reliability of our findings (results not presented).

It is important to note that, although the system is local-
ized for 1.0 < μ < 1.5, its eigenfunctions have power-law
tails with exponent 2μ; therefore its second moment diverges
N → ∞. The presence of these fat tails allows an unbounded
growth in time of the second moment in the limit of N → ∞.
For μ < 1.5 the saturation value of the second moment σ 2

0,SV

is σ 2
0,SV = N2

12 f (b, μ), where f (b, μ) � 1.
Thus, for μ < 1.5 and assuming a spreading form σ 2

0 (t >

τW ) = v2
0τ

2
W + √

2v2
0τW (t − τW ), we can calculate the time ts

where the spreading reaches its saturation value by imposing
σ 2

0,SV = σ 2
0 (ts), obtaining

ts = σ 2
0,SV√

2v2
0τW

+ τW
(
√

2 − 1)√
2

∝ N2μ−1. (F6)

Our analytical estimate of ts agrees with the numerical finding
[see vertical lines in Fig. 11(a) for μ = 1]. Equation (F6)
implies that as N increases, for μ < 1

2 the saturation value
will be reached at shorter times and eventually the dynamics
will be always ballistic (ts becomes smaller than τW ). In the
opposite case, for 1

2 < μ < 3
2 , ts increases with N and we have

a diffusive spreading until saturation.
As in the previous models, the presence of a coher-

ent quantum diffusion (for 1
2 < μ < 3

2 ) generates an al-
most decoherence-independent diffusive regime. Indeed, for
2h̄/ts � γφ � 2h̄/τW , D is almost constant, as most of the
environmental measurements fall in the diffusive regime (after
τW and before the saturation time ts). When γφ � 2h̄/ts the
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noise enters in the dynamics after saturation, generating finite-
size effects. Figure 11(b) shown D vs γφ computed using the
Green-Kubo approach for different N in the extended, critical,
and localized regimes (μ = {0.8, 1, 1.3}). From Eq. (F6) we
can see that for 1

2 < μ < 3
2 , ts increases with N , and finite-size

effects start at smaller values of the decoherence strength
[see black arrows in Fig. 11(b)]. For γφ > 2h̄/τW , decoher-
ence affects the dynamics mainly during the initial ballistic
spreading, leading to a decrease of the diffusion coefficient
proportional to v2

0 .
For μ < 1

2 , the velocity of the initial ballistic spreading
[see Eq. (F5)] increases with N faster than that saturation
value. Therefore, ts decreases with N , becoming smaller than
τW and leaving no place for a diffusive dynamics. Hence, no
decoherence-independent region can be found for the diffu-
sion coefficient.

For μ > 3
2 , ts converges to a constant value as N increases.

Thus, for γφ < 2h̄/ts the diffusion coefficient will be linearly
dependent on γφ and we cannot have a dephasing-independent
regime. This situation is similar to the localized case of the
Harper-Hofstadter-Aubry-André model.

APPENDIX G: PURITY OR LOSCHMIDT ECHO

The purity, defined as

M(t ) = Tr[ρ(t )ρ(t )], (G1)

where ρ(t ) = eLtρ0 is the evolved density matrix of a local
excitation, is a measure of the coherence’s level of ρ(t ). In
addition, M(t ) = 1 implies that ρ(t ) is a pure state (fully
coherent), while M(t ) < 1 indicates a mixed state (incoherent
superposition).

In the following we show that the purity can be calculated
using the QD simulation by generating a Loschmidt echo in
the dynamics. The superoperator L is defined by

L[ρ] = − i

h̄
[Hρ − ρH] + Lφ[ρ] = L0 + Lφ, (G2)

where H is the Hamiltonian and Lφ the HS dephasing. We
can see that L† = L†

0 + L†
φ = −L0 + Lφ , and since the den-

sity matrix is a Hermitian operator, we have ρ(t ) = ρ†(t ) ⇒

eLtρ0 = ρ0eL
†t . Using these properties, we rewrite the

definition of the purity in the form

M(t ) = Tr[ρ(t )ρ(t )] = Tr(eLtρ0eLtρ0) (G3)

= Tr[ρ0eL
†t eLtρ0] ≡ Tr[ρ0ρLE(2t )], (G4)

where it is clear that the purity is a comparison between the
initial density matrix and the density matrix ρLE(2t ) which
is the result of two evolutions. In detail, there is an initial
forward evolution ρ(t ) = e(L0+Lφ )tρ0 and a second evolution
with the sign of the Hamiltonian inverted (backward evolu-
tion) ρLE(2t ) = e(−L0+Lφ )tρ(t ), i.e., the purity corresponds to
the echo observed on ρ0 after reverting the time. If the initial
state is a pure state ρ0 = |0〉 〈0|, we can directly obtain the
purity numerically by a stochastic simulation of the forward
and the backward evolution and by looking at the probability
of returning to the initial state (in our case, the initial site).

We studied the purity or Loschmidt echo as a function
of time in the extended, critical, and localized regimes in
the HHAA model changing the decoherence strength. These
results are shown in Fig. 12. We observe that for short times
the decay of the purity is exponential and only depends on the
decoherence strength and the initial state in all regimes. After
t ≈ 4h̄/γφ (numerically estimated), the decay of the purity be-
comes a power law M(t ) ∝ 1√

D(γφ,W )t
, where D(γφ,W ) is the

diffusion coefficient of the forward dynamics (dashed curves
in Fig. 12). From the results of the previous Appendixes (for
γφ < γ c

φ ) we infer that the rate of decay of the purity in this
power-law regime decreases with γφ in the extended regime,
increases in the localized regime, and remains constant at
the critical point. This can be interpreted by considering that
the localized states are more protected from decoherence, as
decoherence affects fewer sites. In this case, as we increase
the decoherence strength the decay of the purity is stronger in
both the short- and long-time regimes as a consequence of the
delocalization of the wave function. Further, in the extended
regime, while a stronger decoherence causes a faster decay
in the purity at short times, at long times, where the forward
dynamics determines the decay rate, it becomes slower for
stronger decoherence. This counterintuitive result is under-
stood as a consequence of the ballistic growth of the wave

FIG. 12. Time evolution of the purity (Loschmidt echo) M(t ) with different dephasing strength in a HHAA chain with N = 1000 and
(a) W = J (extended phase, (b) W = 2J (MIT), and (c) W = 3J (localized phase). Colored curves represent different γφ as indicated in the
legends. The black dashed lines are theoretical predictions M(t ) ∝ 1√

Dt
, with D obtained from (a) and (c) Eq. (D2) and (b) Eq. (C8).
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FIG. 13. (a) Probability of finding the particle in the initial site P00(t ) for a HHAA chain with W = 2J . Up to time τR (τR = 25, first vertical
dashed line) the system evolves with L; thereafter the sign of the Hamiltonian is inverted (the system evolves with L†). The value of P00(t )
at 2τR (echo, second vertical dashed line) corresponds to the purity of the system at time τR [M(τR )]. Colored curves represent different γφ

as indicated in the legend. (b) Purity (echo) at fixed time τR = {10, 25, 100, 500} as a function of the dephasing time τφ = h̄/γφ in a HHAA
chain with W = 2J . The vertical colored dashed lines mark τR/4, while the colored dash-dotted lines show the analytical behavior for τφ � τR.
(c) Time at which the variance of the wave packet reaches its minimum after a Hamiltonian inversion at τR in a HHAA chain with W = 2J .
Vertical colored dashed lines represent 2τR, while the horizontal lines stand for τR.

packet, which in the long-time regime makes it more sensitive
to fluctuations.

To clarify the behavior of M(t ) at the MIT, we show in
Fig. 13(a) the evolution of P00 (probability of being at the
initial site), where the Hamiltonian is reverted at time τR. At
the LE time t = 2τR, we have P00(2τR) = M(τR). For γφ �
h̄/τR, we observe that the P00(t ) returns to the initial site and
an echo is formed. Note that in the absence of dephasing
the return is complete and the purity is 1. However, if τR �
4h̄/γφ , P00(2τR) is only determined by the forward diffusive
dynamics without a significative echo formation. There are no
coherences left to reconstruct the initial dynamics and there-
fore no echo (peak) is observed, i.e., the P00(t ) keeps decaying
even with the Hamiltonian reverted. This means that the mem-
ory of the initial state is completely lost. Thus, the density
matrix is the incoherent superposition of all possible histories.
In this sense, after 4h̄/γφ the diffusive spreading observed at
the MIT differs from the coherent quantum diffusion in the
fact that the dynamics it is no longer reversible.

This purity behavior at the MIT is summarized Fig. 13(b),
where the value of the echo (purity) for different τR is shown
as a function of τφ = h̄/γφ . We observe a constant plateau up
to τφ ≈ τR/4, indicated by vertical black dashed lines. After
that, we have an exponential growth up to the value 1.

Similar results are found by looking at the width of the
returned packet. This is shown in Fig. 13(c), where the time
at which the second moment reaches its minimum (counted

from the reversal time τR) is plotted as a function of τφ . After
the change in the Hamiltonian sign the wave function starts to
shrink; however, this shrinking lasts until the echo time 2τR

only if τφ > 2τR. This is shown in Fig. 13(c) as a plateau.
When τφ < 2τR, the width of the wave packet reaches its
minimum at approximately t ≈ τφ/2 and starts to broaden
again. It is interesting to note that for 2h̄/τR < γφ < 4h̄/τR,
the wave function is widening again, but we observe an echo
in the polarization.

We observed that the dependence of the diffusion coeffi-
cient with the dephasing strength is inherited by purity (LE)
dynamics, as for long times it decays with a power law
depending only on D. As a consequence, the purity decay
at the critical point enters an almost dephasing-independent
decay. However, this regime differs substantially from the
chaos-induced LE perturbation-independent decay proposed
by Jalabert and Pastawski [47], as we might have gleaned from
Ref. [33]. Indeed, in our case the correlation length of the
noise fluctuations is smaller than the mean free path, which
does not satisfy the conditions needed for a perturbation-
independent decay of the LE. For our local noise, the Feynman
history that has suffered a collision with the noisy poten-
tial loses the memory of where it comes from; thus it is
irreversible as in Büttiker’s dephasing voltage probe. In that
sense, the environment-independent decay of the LE or pu-
rity should not be interpreted in the perturbation-independent
decoherence context, but rather as a strong irreversibility.
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