
Eur. Phys. J. B (2019) 92: 144
https://doi.org/10.1140/epjb/e2019-100016-3 THE EUROPEAN

PHYSICAL JOURNAL B
Regular Article

Real and imaginary energy gaps: a comparison between single
excitation Superradiance and Superconductivity and robustness
to disorder?
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Abstract. A comparison between the single particle spectrum of the discrete Bardeen-Cooper-Schrieffer
(BCS) model, used for small superconducting grains, and the spectrum of a paradigmatic model of Single
Excitation Superradiance (SES) is presented. They are both characterized by an equally spaced energy
spectrum (Picket Fence) where all the levels are coupled between each other by a constant coupling which
is real for the BCS model and purely imaginary for the SES model. While the former corresponds to
the discrete BCS-model describing the coupling of Cooper pairs in momentum space and it induces a
Superconductive regime, the latter describes the coupling of single particle energy levels to a common
decay channel and it induces a Superradiant transition. We show that the transition to a Superradiant
regime can be connected to the emergence of an imaginary energy gap, similarly to the transition to
a Superconductive regime where a real energy gap emerges. Despite their different physical origin, it is
possible to show that both the Superradiant and the Superconducting gaps have the same magnitude
in the large gap limit. Nevertheless, some differences appear: while the critical coupling at which the
Superradiant gap appears is independent of the system size N , for the Superconductivity gap it scales as
(lnN)−1, which is the expected BCS result. The presence of a gap in the imaginary energy axis between
the Superradiant and the Subradiant states shares many similarities with the “standard” gap on the real
energy axis: the superradiant state is protected against disorder from the imaginary gap as well as the
superconducting ground state is protected by the real energy gap. Moreover we connect the origin of the
gapped phase to the long-range nature of the coupling between the energy levels.

1 Introduction

Cooperative effects, which are at the basis of emergent
properties [1], are at the center of research investigations
in a vast variety of fields: emergent properties in highly
correlated materials [2], cooperative emission in supercon-
ducting qubits [3], Superradiance in cold atomic clouds [4],
cooperative shielding in long range interacting systems [5],
collective excitations in semiconductors [6], plasmonic
Dicke effect [7], biophysical systems [8,9] and proposal of
quantum devices which exploits cooperative effects [10].
Despite the great importance of emergent properties,
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Heiko Rieger.

a e-mail: fausto.borgonovi@unicatt.it

a general unifying framework and a full understanding
of cooperative effects has not been found yet. One of
the most interesting properties of cooperative effects is
their robustness to the noise induced by external envi-
ronments. A well known example is Superconductivity,
but other quantum emergent effects, such as Single Exci-
tation Superradiance (SES), have also been shown to
be robust to noise [11–14]. This suggests that emergent
properties could play an essential role in the successful
development of scalable quantum devices able to operate
at room temperature. Since cooperative effects represent
a common mechanism to all these emergent phenomena,
we believe that finding links between different cooperative
effects will be fundamental to progress our understanding
of emergence. As was suggested by Fano [15] a com-
mon mechanism underlies several collective phenomena,
such as Superconductivity, plasmon excitation and giant
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Fig. 1. (Left upper panel) Paradigmatic model of SES: the
coupling of equally spaced single particle energy levels to a
common channel in the continuum induces a non-Hermitian
all-to-all interaction between the energy levels described by the
Hamiltonian in equation (1) with V0 = iγ/(2N). (Right upper
panel) The discrete BCS model of Superconductivity where
Cooper pair states are coupled by an all-to-all Hermitian inter-
action, see arrows between levels, described by the Hamiltonian
in equation (1) with V0 = γ/(2N). (Lower left panel) Complex
eigenvalues En − iΓn/2 for the SES model and the imaginary
energy gap are shown. (Lower right panel) The eigenvalues En
and the real energy gap are shown for the BCS model. Param-
eters are: N = 100, W = 1, γ = 10γH,NH

cr , where γH,NH
cr is the

critical coupling for the BCS/SES transition.

resonances in nuclei. In particular a possible connection
between Superradiance and Superconductivity has been
discussed by Scully [16,17].

Here we perform a comparison between Superconduc-
tivity, i.e. the discrete Bardeen-Cooper-Schrieffer (BCS)
model, and Single Excitation Superradiance (SES model).
We show that in both cases we have the emergence of a
“gap” in the energy spectrum. Superradiance is usually
referred to the case of many excitations in an ensemble of
N two level systems and to the existence of states which
emit energy with an intensity proportional to N2. On the
other hand, SES refers to the possibility that a single exci-
tation coherently shared by N two level systems can decay
with a rate proportional to N , an effect defined as the
Super of Superradiance in reference [18] due to the fact
that SES involves a fully entangled state. Note that SES
has been found experimentally in interacting two level
system, such as cold atomic clouds [19] or in molecular
aggregates [20].

Specifically, we analyze a paradigmatic model of SES,
which has been studied in [21], see Figure 1. In such model,
the single excitation energy levels are assumed equally
spaced and connected to a single decay channel in the
continuum. Due to the fact that the system is open and
the excitation can be lost in the common decay chan-
nel, the eigenvalues of the system are complex. When the

resonances overlap, a Superradiance transition occurs: a
Superradiant state acquires most of the decay width of the
system, while the other N − 1 subradiant states decrease
their own widths on increasing the coupling strength with
the common decay channel. In the limit of large coupling
to the continuum only the Superradiant state can decay.
Here we show that the Superradiance transition is con-
nected with the emergence of an imaginary energy gap
between the complex eigenvalues of the system. Our aim
is to investigate and compare the energy gaps arising in
such paradigmatic model of Superradiance [21–23] with
the well-known energy gap present in a model of Supercon-
ductivity (the discrete BCS model [24–30]), paying main
attention to the robustness to disorder induced by the
presence of a gap and to the kind of interaction which
originates the gap.

The discrete BCS model is widely used to analyze
Superconductivity in small metallic grains [25–28]. More-
over, the single particle (single Cooper pair) sector of
the discrete BCS model has been studied in several
papers [29,30]. In this case, the model is very similar to
the model proposed by L. Cooper in his seminal paper [31]
and its Hamiltonian reads:

H = H0 + V =
∑
k

E0
k |k〉 〈k| − V0

∑
k,k′

|k〉 〈k′| , (1)

where |k〉 is the Cooper pair state, E0
k is the unperturbed

energy, usually taken as equally spaced (picket fence (PF)
spectrum), and V0 is the coupling between the Cooper pair
states. The coupling is the same for all the states, similarly
to what happens in models with an infinite range coupling
in space, with the difference that here the coupling is in
momentum space. The same model, see Figure 1, is used
to describe the Superradiance transition in a system where
many levels are coupled to the same channel in the exter-
nal environment [21]. The only but important difference
is that for the case of Superradiance V0 is a pure imag-
inary number. In this case |k〉 represents a single energy
level or an atomic or molecular excitonic state in a specific
point of the real space. For the case of Superradiance, the
non-Hermitian Hamiltonian, originating from the imagi-
nary coupling, takes into account the fact that the system
can decay into the continuum but it also represents the
coupling between the energy levels which modifies the
spectral features of the system [32–36]. The limit of valid-
ity and the effectiveness of the effective non-Hermitian
Hamiltonian description of the system has been investi-
gated in references [37,38]. In such systems a transition to
Superradiance occurs above a critical coupling strength.
In the Superradiant regime, when one Superradiant state
acquires most of the decay width of the system, a gap
opens in the complex energy plane of the non-Hermitian
Hamiltonian, see Figure 1 lower left panel.

Note that the model presented in equation (1), apart
from being relevant in studying cooperative effects, is
also relevant in describing realistic systems. For instance,
for the Hermitian case, this model can be reproduced in
ion trap experiments with a tunable interaction range,
including all-to-all coupling [39–42]. On the other side, for
the non-Hermitian case, this model is relevant in nuclear
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physics [32–36] and it could also be deviced in molecular
systems [9].

In Section 2 we compare the imaginary gap present
in the SES model with the real gap emerging in the
discrete BCS model. We show that the Superradiance
transition coincides with the opening of a gap in the com-
plex energy plane. In the limit of large gap, the magnitude
of the Superconducting gap is the same as the Superra-
diance gap. Nevertheless, our analytical results show that
the critical coupling which determines the Superradiance
transition scales with the system size differently from the
critical coupling associated to the Superconductivity tran-
sition. In Section 3 we present a few numerical results
showing the validity of our analytical equations. Then, in
Section 4 we apply the perturbation theory (up to sec-
ond order) to non-Hermitian systems and we show, also
through numerical simulations, how the imaginary energy
gap can protect the states from perturbations, such as
static disorder, in the same way as a real energy gap does.
This result is consistent with several results found in liter-
ature [11–14,39,40] about the robustness of Superradiance
to disorder. Finally, in Section 5 we analyze the role of
the range of the interaction, showing that an energy gap
emerges in the Hermitian system when the interaction
is long-ranged. In the Conclusions the relevance of our
analysis to realistic systems is discussed.

2 Analytical results for N levels

Let us consider N equally spaced levels in an energy range
W , coupled between each other with a constant coupling
V0, which can be real or imaginary. The Hamiltonian can
thus be written as in equation (1), where for the energy
we assume a PF distribution, namely

E0
k = kδ = k

W

N
, k = −N

2
, . . . ,

N

2
, (2)

where δ = W/N is the level spacing. First, for the
sake of clarity, we present the derivation of the Gap
Equation [21,31,43,44], both for the Hermitian and non-
Hermitian cases, which is equivalent to the Schrödinger
Equation and it makes the computation of some eigenval-
ues much easier. For the derivation of the Gap Equation
we follow [43,44], which presents a simplified version of the
famous derivation by Cooper in his seminal paper [31].

We want to solve the Schrödinger Equation

H |Ψ〉 = E |Ψ〉 , (3)

where |Ψ〉 is an eigenstate of the full Hamiltonian H and
it can be expanded as

|Ψ〉 =
∑
k

ak |k〉 , (4)

where |k〉 are eigenstates of H0, satisfying

H0 |k〉 = E0
k |k〉 . (5)

Equation (3) can be rewritten as

(H −H0) |Ψ〉 = V |Ψ〉 . (6)

Then, using the expansion (4), we get

(H−H0)
∑
k′

ak′ |k′〉 = V
∑
k′

ak′ |k′〉 =
∑
k′

ak′V |k′〉 . (7)

Now let us project equation (7) on the state 〈k|. Defining
Vkk′ = 〈k|V |k′〉 we have

〈k|
∑
k′

(E − E0
k′)ak′ |k′〉 =

∑
k′

ak′Vkk′ . (8)

Now, since 〈k|k′〉 = δk,k′ and Vkk′ = −V0 ∀k, k′ we get∑
k′

(E − E0
k′)ak′ 〈k|k′〉 = (E − E0

k)ak = −V0

∑
k

ak. (9)

Defining C ≡
∑
k ak we have

ak = − V0C

E − E0
k

(10)

so that

C =
∑
k

ak = −V0

∑
k

C

E − E0
k

. (11)

Dividing by C we finally obtain the Gap Equation

1 = −V0

∑
k

1

E − E0
k

. (12)

Equation (12) has been obtained by simple linear manip-
ulations of the Schrödinger equation, and so they are
equivalent. Given the unperturbed eigenvalues E0

k, there
are N possible values of E which satisfy equation (12),
which are the eigenvalues of H.

The term Gap Equation comes from the fact that
it is commonly used to compute the gap between the
ground state and the excited states. In the next sec-
tions we will compute the gap for the case V0 = γ/(2N)
real (for Superconductivity) and for V0 = iγ/(2N) com-
plex (for Superradiance). Note that in both cases we
rescale the coupling by N as it is found in the discrete
BCS model [25–30]. The non rescaled case can be eas-
ily deduced by substituting γ with Nγ in the following
results.

2.1 Hermitian case

Following references [29–31,43,44], let us review the main
results about the Gap Equation for the Hermitian case.
Note that with respect to the BCS model, 1/δ is the Den-
sity of States at the Fermi level, W is the Debye energy
and V0 the effective phonon-mediated interaction. Let
us now consider the Hermitian case, with V0 = γ/(2N).
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Fig. 2. Graphical solution of Gap Equation (13) in the
Hermitian case. The all-to-all coupling here is V0 = γ/(2N).
We set N = 5.

Recalling that the unperturbed spectrum is given by (2),
we multiply both sides of (12) by 2W/γ to have

2W

γ
=

N/2∑
k=−N/2

1

k − E/δ
. (13)

A graphical solution of equation (13) is shown in Figure 2
for N = 5. The r.h.s. of equation (13), shown as a continu-
ous black line, is an unbounded function of E/δ having N
asymptotes, corresponding to E/δ = −N/2, . . . , N/2 and
shown as vertical black lines. The l.h.s., shown as dashed
lines, is independent of E/δ. The solutions are given by
the values of E where the r.h.s. intersects the l.h.s. and
they are shown by full circles in Figure 2.

From Figure 2 one can see that there are N = 5 solu-
tions to equation (13). Those solutions represent the
eigenvalues E of the full Hamiltonian (1), divided by
the level spacing δ = W/N of the unperturbed levels.
Moreover, one can observe that, by increasing the ratio
γ/(2W ) (so to increase the all-to-all coupling), the energy
gap between the ground state and the first excited state
increases, too. We are here interested in computing that
gap in the limit N → ∞ and keeping W = const., so
that the spacing δ of the unperturbed levels tends to 0.
First of all, from Figure 2 we can see that the energy of
the excited states are all in the range [−W/2,W/2] and,
in particular, the first excited state lies in the interval
−W/2 + δ < E2 < −W/2 + 2δ. This implies that only the
ground state energy E1 can be less than −W/2 and that
the energy of the first excited state E2 tends to −W/2
when δ → 0. Now, let us focus on the energy of the ground
state.

If N � 1, we can take the continuum limit for the Gap
Equation (12)

1 = − γ

2N

∫ W/2

−W/2

N(x)dx

E − x
, (14)

where N(x) = N/W is the density of states and it is con-
stant for a PF level distribution. Then we can analytically
solve the integral

1 = − γ

2W

∫ W/2

−W/2

dx

E − x
=

γ

2W
ln

2E −W
2E +W

, (15)

noting that the above solution is valid only for E < −W/2.
For what we stated before, the only state which satisfies
this requirement is the ground state E1. Then we have

E1 =
W

2

1 + e2W/γ

1− e2W/γ
. (16)

Now, let us recall that E2 → −W/2 when N →∞ and
W does not depend onN (see [43,44] and the previous con-
siderations in Fig. 2). We can then define the Hermitian
gap between the ground state and the first excited state
as

∆H = E2 − E1 = −W
2
− E1 =

W

e2W/γ − 1
. (17)

Note that the expression of the gap obtained is the same
as the one obtained by Cooper [31], but it is slightly dif-
ferent from the BCS gap [24–30].1 In the limit W � γ/2
equation (17) is approximated as

∆H ≈
γ

2
. (18)

On the other hand, when W � γ/2, equation (17)
becomes

∆H ≈W e−2W/γ . (19)

On increasing γ, the gap ∆H increases as well and for
some γ = γH

cr it becomes equal to the unperturbed level
spacing δ = W/N . By setting ∆H = δ, it is easy to find
that for N � 1,

γH
cr =

2W

ln(N + 1)
≈ 2W

lnN
, (20)

which defines the critical coupling at which a gap opens
in the BCS model.

2.2 Non-Hermitian case

2.2.1 Superradiant state (Gap Equation)

Now, let us consider the non-Hermitian case V0 =
iγ/(2N). Starting from equation (12) we obtain a

1 In the BCS theory [43,44] and in references [24,39,40] the fol-
lowing expression for the gap is reported: ∆BCS = W/ sinh(2W/γ),
which gives different results from equation (17) in some parameter
range. In particular, when W � γ/2, equation (17) and ∆BCS differ
by a factor of 2, namely ∆H ≈W e−2W/γ and ∆BCS ≈ 2W e−2W/γ .
On the other hand, in the opposite limit W � γ/2, both (17) and
∆BCS have the same approximated expression ∆H ≈ ∆BCS ≈ γ/2.
Nevertheless, both expressions predict that the gap closes in the
limit γ/W → 0.

https://epjb.epj.org/
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Fig. 3. Complex eigenvalues (22) varying γ from γ =
(2W/π)/10 (open circles) to γ = 10(2W/π) (full circles). γ
increases following the arrows. The dashed line marks the value
Γn = γ/N . Parameters: N = 6 (upper panel) and N = 7 (lower
panel).

Gap Equation

1 = − iγ

2N

∑
k

1

E− E0
k

, (21)

where the eigenvalues are now complex,

E = E − iΓ
2
. (22)

This complex equation splits into two real equations
∑
k

E − E0
k

(E − E0
k)2 + Γ2/4

= 0∑
k

Γ/2

(E − E0
k)2 + Γ2/4

=
2N

γ

(23)

which have N solutions that depend on N and γ. In
Figure 3 we plot the eigenvalues (22) in the plane
(E/δ,Γ/γ) for N = 6 (upper panel) and N = 7 (lower

panel), as a function of γ. In particular, we plot the tra-
jectories of the eigenvalues starting from γ = (2W/π)/10
(open circles) up to γ = 10(2W/π) (full circles). The value
γ = 2W/π marks the Superradiance transition, as we will
show here below. When γ is small (open circles in Fig. 3),
the real parts of the eigenvalues are given by (2), while
the imaginary part is Γn ≈ γ/N for all eigenvalues. On
increasing γ, the spacing between the real parts of the
eigenvalues decreases (a phenomenon called “pole attrac-
tion”) up to a critical point γSR, where we see a different
behaviour between N = 6 and N = 7.

For N = 6 (upper panel of Fig. 3), the two eigenvalues
whose real part is closer to 0 collapse to the imaginary
energy axis (so that En = 0 for both of them) when
γ > γSR. The widths of those two eigenvalues, however,
have a different behaviour because one increases with γ
(and we call the respective state Superradiant) while the
other one decreases with γ. For γ � γSR the total decay
width of the system is concentrated in the superradiant
state, while the other N − 1 states have a negligible decay
width, and thus they are called subradiant.

For N = 7 (lower panel of Fig. 3) the behaviour is sim-
ilar to that of N = 6 in that, on increasing γ, the real
parts of the eigenvalues are attracted to each other and
for γ � γSR the total decay width of the system is con-
centrated into one superradiant state. The difference here
(with respect to N = 6) is that for γ > γSR only the
Superradiant state has ESR = 0, while En 6= 0 for the
subradiant states.

The same behaviour seen for N = 6 has been observed
for all even values of N , while the behaviour observed
for N = 7 has been seen for all odd values of N . In the
following calculations we look for an analytical expression
for the width ΓSR of the superradiant state and for the
critical coupling γSR and, based on the above discussion,
we can set E = 0 in equation (23).

Moreover, in the limit N � 1 we approximate the PF
spectrum (2) with a continuous energy distribution con-
stant in the interval [−W/2,W/2], so that we can solve
the second equation in (23)

2N

γ
=
N

W

∫ W/2

−W/2
dx

Γ/2

x2 + Γ2/4
=

2N

W
arctan

W

Γ
, (24)

from which we get the width of the superradiant state

ΓSR =
W

tan W
γ

. (25)

This term is crucial to determine the gap in the complex
plane between the superradiant and the closest subradiant
state. Note that ΓSR has to be positive, and this gives
the condition of validity of equation (24), which is γ ≥
2W
π . Therefore the superradiant state exists only above

a critical coupling strength which coincides with the so-
called Superradiance transition (at γ = γSR), as we will
show below.

https://epjb.epj.org/
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2.2.2 Superradiant transition

In reference [21] the critical coupling at which a Superra-
diance transition occurs has been computed analytically
by studying the dependence of the widths of the subradi-
ant states on γ. Indeed below the Superradiance transition
the widths of the subradiant states increase with γ, while
above it, they decrease with γ. From reference [21] we
have:

γSR =
2W

π
. (26)

Which is the same critical value of γ computed in the
previous section.

Adapting the analytical results of reference [21] to our
case (see Appendix A for details) the decay widths of all
the eigenstates below the Superradiance transition are

Γ =
W

Nπ
ln

(
1 + γ/γSR

1− γ/γSR

)
for γ < γSR, (27)

while all the widths of the subradiant states above the
Superradiance transition are

Γsub =
W

Nπ
ln

(
γ/γSR + 1

γ/γSR − 1

)
for γ > γSR. (28)

Note that the critical coupling parameter γSR is the point
where the widths (27) and (28) are non-analytical.

2.2.3 Imaginary energy gap

The gap in the complex energy plane can be defined as

∆NH = max
i

{
min
j 6=i

[dist (Ei,Ej)]

}
, (29)

where the distance in the complex plane between two
eigenvalues is

dist (Ei,Ej) =

√
(Ei − Ej)2

+
1

4
(Γi − Γj)

2
. (30)

We can use the previous analytical results given in equa-
tions (27) and (28) to estimate such complex gap. For
γ < γSR, the widths of all the states are the same and
the distance in real energy is constant and equal to δ,
where δ is the level spacing in the PF model, see equa-
tion (2), so that we have ∆NH = δ and no gap is present.
On the other side in the superradiant regime γ > γSR, we
can estimate ∆NH as the distance in the complex plane
between the superradiant eigenstate ESR and the closest
subradiant state Esub, see Appendix A for details, namely

∆NH =

√
(ESR − Esub)

2
+

1

4
(ΓSR − Γsub)

2
. (31)

When N → ∞ we have (ESR − Esub) ≈ δ → 0 and
Γsub → 0 (see (28)), so that the gap ∆NH is determined

only by the decay width of the superradiant state (25),

lim
N→∞

∆NH =
ΓSR

2
=

W

2 tan W
γ

. (32)

Now, we can define the critical value γNH
cr as the value of γ

at which the gap opens, i.e. by imposing ∆NH = δ. From
equation (32), we then have

γNH
cr =

W

arctan N
2

. (33)

Note that this value is finite in the N →∞ limit,

lim
N→∞

γNH
cr =

2W

π
, (34)

and it has the same value as γSR (see Eq. (26)). Our results
demonstrate that the Superradiant transition, previously
analyzed in reference [21], is equivalent to the emergence
of a gap in the imaginary energy axis.

Moreover, we can approximate the gap for large γ, close
to the transition and below the critical point, respectively,
as

∆NH ≈
γ

2
for γ � γSR (35a)

∆NH ≈
πW

4

(
γ

γNH
cr

− 1

)
for γ & γSR (35b)

∆NH = 0 for γ ≤ γSR. (35c)

Note that for γ � γSR the complex energy gap of the
superradiant model is identical to the real energy gap of
the superconductivity model, see equation (18). On the
other side, in the limit of large system sizes, the critical
coupling for the emergence of a gapped state goes to zero
for the BCS model, while for the SES model it remains
finite.

3 Numerical results

Here, we validate our previous analytical predictions with
few numerical results.

In Figure 4 the gap is shown, both for the Hermitian and
non-Hermitian cases, as a function of γ for different system
sizes N . For the non-Hermitian case we define the gap
using the distance in the complex plane, see equations (29)
and (30). Similarly, for the Hermitian case we define the
gap as

∆H = max
i

{
min
j 6=i

[dist (Ei, Ej)]

}
, (36)

where dist (Ei, Ej) = |Ei − Ej | is the distance in the real
axis (consistently with the non-Hermitian definition (30)).
With this definition, the presence of a finite and N inde-
pendent ∆H,NH in some region of γ signals the existence
of an energy gap in the spectrum. In contrast, we have no

https://epjb.epj.org/
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Fig. 4. (a) Gap ∆NH vs. the coupling parameter γ. Symbols are
given by (29) and (30), while the continuous blue curve shows
the analytical estimate (32). The dashed vertical line marks the
critical coupling γNH

cr from equation (34). (b) Gap ∆H vs. the
coupling parameter γ. Symbols are given by (36) while the
continuous blue curve shows the analytical estimate (17). The
arrows indicate the critical coupling γH

cr from equation (20).
Here, W = 1 and N = {100, 1000, 10 000}.

energy gap in the spectrum in the region of parameters
where ∆H,NH goes to zero as N increases.

The continuous blue curve in Figure 4 indicates the
analytical estimate of the gap ∆H,NH for both cases:
equation (17) for the Hermitian case and equation (32)
for the non-Hermitian one. The critical couplings γH,NH

cr
can be identified graphically as the values of γ above
which the numerical data for ∆H,NH (symbols) coincide
with the analytical estimates (continuous blue curves). In
the figure our predictions of the critical couplings given
in equation (34) (vertical dashed line in panel (a)) and
equation (20) (arrows in panel (b)) are also shown.

Our analytical estimate for the gap works well above the
critical γ for both Hermitian and non-Hermitian coupling,
for all the values of N shown. Interestingly we find that
the critical γ is independent of N for large N in the non-
Hermitian case, as we predicted in equation (34), while it
decreases with N in the Hermitian case, according to our
prediction (20). Moreover from Figure 4 one can see that
the transition to a gapped phase in the non-Hermitian
case is much sharper than the transition in the Hermitian
case. Note that for γ < γH,NH

cr our estimate predicts that
∆H,NH → 0 for γ → 0, while the numerical simulations
show that ∆H,NH → δ = W/N . This is clearly a finite size
effect and it is not relevant since δ goes to zero when
N →∞.

4 Imaginary energy gap and robustness
to perturbations

We have shown the emergence of both Hermitian and
non-Hermitian gaps in the spectrum of a Picket-Fence
model. While, in the Hermitian case, it is well known that
a gap between the ground state and the excited states
makes the first more robust to perturbations, it is not
trivial that an imaginary gap has the same effect on the
gapped state. Thus, here we will apply perturbation the-
ory to non-Hermitian systems and we will show how the
distance in the complex plane is related to the robust-
ness to perturbations. Then we will show numerically how
the non-Hermitian gap makes the system robust to static
disorder.

4.1 Non-Hermitian perturbative approach

Let us consider a perturbation D to the non-Hermitian
Hamiltonian H, so that the total Hamiltonian of the
system can be written as:

HD = H +D, (37)

where H is a generic non-Hermitian symmetric
Hamiltonian.

Since H is non-Hermitian, its eigenfunctions are not
orthogonal. First of all, let us define a “non-Hermitian
bra”, being the transpose of a ket

〈〈ψ| := (|ψ〉)t. (38)

Since the Hamiltonian is symmetric, the left eigenfunc-
tions 〈〈ψi| are the “bra” of the right eigenfunctions |ψi〉,
that is

H |ψi〉 = Ei |ψi〉 and 〈〈ψi|H = Ei〈〈ψi| . (39)

From here, the biorthogonality condition arises as

〈〈ψi|ψj〉 = δij . (40)

When the perturbation D is sufficiently small, a pertur-
bative correction of the complex eigenvalues up to second
order can be derived [11,12], and it has the expression

En ≈ En + 〈〈ψn|D|ψn〉+
∑
m6=n

〈〈ψn|D|ψm〉2

En − Em
. (41)

From equation (41) it is clear that the strength of the
perturbation is determined by the ratio of two complex
numbers z1 = 〈〈ψn|D|ψm〉2, z2 = En − Em. This proves
that a state separated by a gap in the complex plane
from the rest of the spectrum is robust to perturbations
as long as the gap is large compared to the modulus of
the perturbations.

As a simple example of the above general calculations,
let us consider a system made of two resonant sites, sep-
arated by a pure imaginary gap iγ, and perturbed with a
coupling D. Note that this simple model has been used to
describe experimental evidence of Dynamical “Quantum
Phase Transition” in spin systems [45–48].

The corresponding non-Hermitian Hamiltonian is

H +D =

(
E0 0
0 E0 − iγ

)
+

(
0 d
d 0

)
and the eigenenergies E± of H + D can be analytically
obtained as

E± = E0 −
iγ

2
± iγ

2

√
1− 4d2

γ2
. (42)

Now, let us consider the case when 2d� γ, i.e. the com-
plex gap γ is much larger than the coupling d between
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the sites. Under this assumption we can expand the
eigenenergies (42) to obtain

E+ ≈ E0 −
id2

γ
, (43)

E− ≈ E0 − iγ +
id2

γ
. (44)

The same result can be obtained by applying the pertur-
bative expansion (41) and it shows that two unperturbed
complex eigenenergies having the same real part but being
distant in the imaginary axis can be robust to a perturba-
tion, as long as the distance in the complex plane is much
larger than the perturbation.

4.2 Robustness of superradiance to static diagonal
disorder

In order to check that the previous results are valid in the
model considered here beyond the perturbative regime, let
us add to the the SES Hamiltonian

H =
∑
k

Ek |k〉 〈k| − i
γ

2N

∑
k,k′

|k〉 〈k′| , (45)

the static disorder

D =
∑
k

εk |k〉 〈k| , (46)

where εk are random numbers uniformly distributed such
that εk ∈ [−ξ/2, ξ/2]. Here the parameter ξ is propor-
tional to the standard deviation of the energy fluctuations
introduced by D and it represents the disorder strength.
In particular, our aim is to study the robustness of the
superradiant state of the non-Hermitian case to such static
disorder. In Figure 5 (upper panel) the width of the super-
radiant state ΓSR divided by the average width 〈γ〉 = γ/N
is shown vs. the disorder strength ξ for different values of
γ larger than the critical γNH

cr . As one can see, the width of
the superradiant state is larger than 〈γ〉 for small disorder
ξ. Then, beyond some critical value of ξ, the width starts
to decrease with ξ, ultimately reaching ΓSR = 〈γ〉 = γ/N
for ξ →∞. In order to quantify phenomenologically such
critical disorder strength, let us define a critical value ξcr

as the value of ξ beyond which the width of the superra-
diant state is less than 95% of its value without disorder.
In this sense, ξcr is proportional to the disorder strength
needed to destroy superradiance. In the lower panel of
Figure 5 ξcr is plotted vs. the ratio γ/γNH

cr . In the same
panel, the gap (32) is plotted as a comparison. As one
can see, apart from small deviations where γ ' γNH

cr , the
critical disorder ξcr increases with γ and it is approxi-
mately proportional to the non-Hermitian gap. This shows
that the non-Hermitian gap makes superradiance robust
to static disorder.

Fig. 5. Upper panel: width of the superradiant state divided
by the average width 〈γ〉 = γ/N vs. the disorder strength ξ
as introduced in the Hamiltonian (37)–(45)–(46). Lower panel:
the critical value ξcr (see text) is plotted vs. γ/γNH

cr as circles.
The red line is the gap, as defined in equation (32). Parameters
in both panels are N = 100, W = 1 and an average over 100
realizations of static disorder is performed.

5 Relation between the gapped regime
and the interaction range

In this section we want to extend our analysis to different
ranges of interaction. In particular, we want to know if
the emergence of the gap is a general outcome of long-
range interactions in a PF model. Differently from the
rest of the paper, here we focus only on the Hermitian
case. Note that the Hermitian model is relevant in many
realistic situations, such as ion traps [39–42], where one-
dimensional systems with tunable interaction range can
be emulated.

We model an interaction of range α by the Hamiltonian
term

V = − γ

2vN,α

∑
k,k′

k 6=k′

|k〉 〈k′|
|k − k′|α

, (47)

where vN,α is a normalization constant and, since we
are dealing with a one-dimensional system, we speak
about “long-range interaction” for 0 ≤ α < 1 and about
“short-range interaction” for α > 1. Note that in ion trap
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experiments [41,42] the exponent α can be tuned from
0 to 3. The case α = 1 is critical because α equals the
dimension of the system and thus we will analyze it sep-
arately. The normalization constant vN,α has been added
in order to have an extensive Hamiltonian energy and
to fix the spectrum of V as large as γ/2. For the case
α = 0, for example, we have vN,0 = N , which is exactly
the Hermitian case studied in the previous Sections. For
α 6= 0, vN,α is determined by numerically diagonalizing V ,
and it has the following scaling with the system size (see
Appendix B for details):

vN,α ∼


N1−α forα < 1

lnN forα = 1

const. forα > 1.

(48)

In order to understand how the presence of a gap is
connected to the range of the interaction, here we study
numerically the presence of the gap ∆H defined in equa-
tion (36). Let us remind that the presence of a finite
and N -independent ∆H in some region of γ signals the
existence of an energy gap in the spectrum.

In Figure 6 we plot ∆H, defined as in equation (36),
as a function of γ for α = {1/3, 1, 5}. The case α = 1/3
shown in Figure 6a corresponds to a long-range interac-
tion and one can see that, similarly to the case α = 0 (see
Fig. 4b), the gap is independent of the system size N for
large γ. On the other hand, for short-range α = 5 (Fig. 6c)
∆H decreases with the system size for any value of γ and
thus there is no gap in the limit N → ∞. For the crit-
ical range α = 1 (Fig. 6b) the results are less clear and
more analysis is needed to establish the non-existence of
a gapped regime (as the data shown in the Figure seem to
indicate).

From Figure 6 one can see that γ = 100 represents a
“strong-coupling” regime for the three values of α shown.
Then, in Figure 7 we plot ∆H (symbols) vs. α for γ =
100 setting the same parameters and the same values of
N as in Figure 6. In Figure 7 one can see two different
regimes: (i) for α < 1 (long range)) ∆H is independent
of N , representing a gap in the N → ∞ limit; (ii) for
α & 1 (short range) ∆H decreases with N , meaning that
there is no gap in the thermodynamic limit. Note that
we checked that in the long range regime (α < 1) the gap
arises between the ground state and the first excited state,
i.e. ∆H = E2 − E1.

As a final remark we note that in this section we have
analyzed the role of the interaction range just in the
Hermitian case, because adding a variable range of the
interaction in the non-Hermitian case is more difficult.
The generalization to different ranges that we used for the
Hermitian case, in fact, cannot be performed as it is for the
non-Hermitian case without loss of consistency. Indeed, an
imaginary interaction Vk,k′ = −iγ|k− k′|−α would lead to
both positive and negative decay widths, while the decay
widths of a non-Hermitian Hamiltonian are required to
be all positive. Nevertheless let us note that in realistic
molecular system the non-Hermitian interaction can have
a complicated power law decay with the distance [49].

Fig. 6. Gap ∆H, as defined in (36), vs. the coupling param-
eter γ with the interaction (47). Here W = 1 and N =
{100, 1000, 10 000}.

Fig. 7. Gap ∆H vs. the range of interaction α for N =
{100, 1000, 10 000}, where the symbols are given by equa-
tion (36). Here, W = 1 and γ = 100.
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6 Conclusions and perspectives

We have compared two paradigmatic models for Super-
conductivity and Superradiance, focusing on the emer-
gence of an energy gap in the real and complex plane,
respectively. We show that a gap arises also in the Super-
radiance model in the complex plane, and we give an
analytical estimate of that gap which agrees very well
with our numerical simulations. We show that the usual
Superradiance transition can be interpreted as a transi-
tion to a gapped regime. Moreover in the large coupling
limit the Superradiance and the Superconductivity gaps
are mathematically the same, while they differ at the criti-
cality. Indeed, while the critical value for the emergence of
Superconductivity depends on the system size, the critical
value for the emergence of Superradiance is independent
of the system size. Finally we have also shown that a gap
in the complex plane can induce robustness to perturba-
tions in the system, similarly to a gap in the real axis. This
result allows to interpret the robustness of Superradiance
to disorder reported in several previous publications in lit-
erature as a consequence of the presence of an imaginary
energy gap. In perspective, the relevance of these energy
gaps to transport and other system properties will be ana-
lyzed. From a mathematical point of view, we have shown
that the emergence of such gapped states can be connected
with the long range nature of the interaction. Indeed
both the discrete BCS model and the SES model share
a distance independent coupling (all-to-all coupling). The
connection of a gapped state with the long range of the
interaction has been also pointed out in references [39,40]
by some of the Authors of this paper.

Even if here we have analyzed very simple models
amenable of analytic treatment, our results can be rel-
evant for a variety of realistic systems, such as molecular
chains [50,51], ion traps [41,42] and photosynthetic sys-
tems [49]. For instance the range of interaction can
be controlled in ion trap experiments [41,42] where the
Hermitian Hamiltonian discussed here can be exper-
imentally realized. Moreover a linear molecular chain
interacting with an electromagnetic field can be modelled
by non-Hermitian Hamiltonians [49] very similar to the
ones considered here. In perspective we plan to analyze
realistic models for quantum transport in presence of non-
Hermitian and Hermitian interactions and to study the
relevance of the gapped regime to the efficiency of trans-
port. We expect that the existence of gapped extended
states can act as a support for efficient energy transport.
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Appendix A: Non-Hermitian coupling:
widths of the subradiant states

In the main text, discussing the case of a non-Hermitian
coupling, we report the analytic expression of the widths
of all the eigenstates for γ < γSR (27) and of the widths
of the subradiant states for γ > γSR (28). Here we derive
those expressions, as well as the critical coupling γSR,
following [21].

Let us consider the case of odd N , so that we can
write N = 2M + 1 with M an integer. Note that the limit
N → ∞ corresponds to M → ∞ and in that limit there
is no distinction between even or odd values of N . The
Hamiltonian (1), with Ek given by (2) and V0 = iγ/(2N),
can be mapped to

H = δH = δ

(
M∑

k=−M

k |k〉 〈k| − iα
M∑

k=−M

M∑
k′=−M

|k〉 〈k′|

)
,

(A.1)

where the center of the unperturbed spectrum is assumed
to be at E0 = 0, without loss of generality, and the
coupling parameter is

α =
γ

2Nδ
=

γ

2W
. (A.2)

We now proceed to compute the eigenvalues λ of H,
which are related to the eigenvalues λ of H by λ = δλ.
Thus, let us consider the matrix 〈k|H |k′〉. By construc-
tion, all column and row vectors, respectively, of the
non-Hermitian part of that matrix are linearly dependent.
Summing iα times the central row (k = 0) to all the other
rows (k 6= 0), one gets the following expression for the
characteristic polynomial:

PM (λ) =
M∏

k=−M

(k − λ)− iα
M∑

k=−M

M∏
j=−M
j 6=k

(j − λ) = 0.

(A.3)

According to equation (A.3), PM (λ) is the sum of two
polynomials,

PM (λ) = QM (λ)− iαRM (λ) (A.4)

which are related in a simple manner,

RM = − d

dλ
QM .
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Taking the limit M → ∞ and using the infinite product
expansion of the sine function we have

P∞(λ) = sin[πλ] + iαπ cos[πλ] = 0 (A.5)

with λ = E − i
2Γ. Then, we can substitute this expression

of λ to get

P∞(λ) = sin

[
π

(
E − i

2
Γ

)]
+ iαπ cos

[
π

(
E − i

2
Γ

)]
= 0.

(A.6)

Separating real and imaginary parts one hassin[πE]
[
eπΓ(1− απ) + (1 + απ)

]
= 0

cos[πE]
[
eπΓ(1− απ)− (1 + απ)

]
= 0 .

(A.7)

So there are two solutions:

(i) sin[πE] = 0, E = n ∈ Z

eπΓ =
1 + απ

1− απ
, (A.8)

from which

Γ =
1

π
ln

(
1 + απ

1− απ

)
(A.9)

under the conditions eπΓ > 0, α < 1
π . This result repre-

sents the widths of all the eigenstates below the Superra-
diance transition.

(ii) cos[πE] = 0, E = n+ 1
2 , n ∈ Z

eπΓ =
απ + 1

απ − 1
, (A.10)

which gives

Γsub =
1

π
ln

(
απ + 1

απ − 1

)
(A.11)

under the conditions eπΓ > 0, α > 1
π . This result repre-

sents instead the widths of the subradiant states above
the Superradiance transition. From these results a critical
coupling parameter αSR = 1/π emerges, which marks the
Superradiance transition.

Now, let us map our expression for λ to λ = E − i
2Γ.

Multiplying by δ we have

En = nδ (n ∈ Z) (A.12a)

Γ =
δ

π
ln

(
1 + α/αSR

1− α/αSR

)
for α < αSR (A.12b)

and

En =

(
n+

1

2

)
δ (n ∈ Z) (A.13a)

Γsub =
δ

π
ln

(
α/αSR + 1

α/αSR − 1

)
for α > αSR, (A.13b)

Fig. B.1. (a) Gap ∆H, as given by equation (36), vs. the
coupling γ with the interaction (47) for different values of the
interaction range α. Here we set W = 1.

where we can use (A.2) to express the ratio between α
and αSR as

α

αSR
=

γπ

2W
. (A.14)

Thus, equations (A.12b) and (A.13b) can be rewritten in
terms of the parameters of H as

Γ =
W

Nπ
ln

(
1 + γ/γSR

1− γ/γSR

)
for γ < γSR (A.15)

and

Γsub =
W

Nπ
ln

(
γ/γSR + 1

γ/γSR − 1

)
for γ > γSR, (A.16)

by defining the critical coupling

γSR =
2W

π
. (A.17)

Appendix B: Long and short-range
interaction

In the text, we reported how the gap ∆H changes with
the range of the interaction for α = {1/3, 1, 5}. Here, in
Figure B.1, we show the dependence of ∆H on γ for some
additional values of the range of interaction, namely for
α = {1/10, 1/2, 3/2, 2}. We would like to point out also
that the definition (36) is equal to E2 − E1 in the range
of γ that we plotted in this figure and in the main text
(Fig. 6).

As we reported in Section 5, in order to obtain the gap
∆H for different range of interaction α, the interaction (47)
is normalized by the constant vN,α defined as the dif-
ference between the maximum eigenenergy and minimal
eigenenergy of the matrix V given in equation (47) with-
out the prefactor (γ/(2vN,α)), i.e. vN,α = V ′max − V ′min. In
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Fig. B.2. The energy range of the interaction vN,α vs. the
system size N for different α = {0, 1/10, 1/3, 1/2, 2/3, 1, 2, 5}.
Symbols are obtained by diagonalizing V (47) without the
prefactor γ/(2vN,α), while lines are the best fits with the
functions (48).

Figure B.2 we plot vN,α vs. N for different values of α and
we show that the exact results obtained from the diago-
nalization of V (symbols) fit well the scaling (48) for all
the values of α shown here.
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