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Abstract — Searching for Anderson localization of light in three dimensions has challenged exper-

imental and theoretical research for the last decades.

Here the problem is analyzed through

large-scale numerical simulations, using a radiative Hamiltonian, ¢.e., a non-Hermitian long-
range hopping Hamiltonian, well suited to model light-matter interaction in cold atomic clouds.
Light interaction in atomic clouds is considered in the presence of positional and diagonal dis-
order. Due to the interplay of disorder and cooperative effects (sub- and super-radiance) a
novel type of localization transition is shown to emerge, differing in several aspects from stan-
dard localization transitions which occur along the real energy axis. The localization tran-
sition discussed here is characterized by a mobility edge along the imaginary energy axis of
the eigenvalues which is mostly independent of the real energy value of the eigenmodes. Dif-
ferently from usual mobility edges it separates extended states from hybrid localized states
and it manifests itself in the large moments of the participation ratio of the eigenstates. Our
prediction of a mobility edge in the imaginary axis, i.e., depending on the eigenmode life-
time, paves the way to achieve control both in the time and space domains of open quantum
systems.
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Introduction. — The interplay of opening and disorder
in systems described by non-Hermitian Hamiltonians has
been at the center of interest in many research fields, show-
ing that non-hermiticity can strongly affect the response
of a system to disorder, inducing many counterintuitive ef-
fects [1-11]. On the other hand, Anderson localization [12]
has been a beacon to understand closed disordered systems
and has been at the focus of an ever increasing research
community, ranging from condensed matter to acoustics,
optics, and ultra-cold matter waves as well as quantum

(a) B-mail: giuseppeluca.celardo@unifi.it (corresponding
author)

memories based on cold atoms [13-21]. In the standard
Anderson localization problem, an excitation can tunnel
to nearest-neighbor sites placed in a regular lattice with
disordered on-site energies (diagonal disorder). Depending
on the value of the disorder strength, a mobility edge can
be present at a specific energy: below this energy the
eigenstates are localized, while above they are delocalized.

Extending the concepts developed for Anderson local-
ization to open quantum systems still remains a challenge.
Light has been an obvious candidate to study Ander-
son localization of non-interacting waves, which has trig-
gered continuous efforts since the mid-80s [22-31]. So
far, Anderson localization of light in three dimensions,
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however, has resisted experimental observation. It has
now been shown that pioneering experiments on Anderson
localization of light [25-27] do not provide a signature for
the Anderson transition in three dimensions [28-32] and
the mere existence of an Anderson phase transition for
light had even been questioned [33,34]. Localization of
light indeed presents many features which strongly differ
from the standard Anderson localization of closed systems:
i) in typical samples, scatterers have random positions in
a three-dimensional volume, leading to positional disor-
der, ii) light induces complex long-range hopping between
the sites, which in the case of two-level systems as scatter-
ing medium can lead to cooperative effects such as Dicke
sub- and superradiance [35-39)], iii) the excitation can es-
cape from the system by photon emission, thus placing
the problem of localization of light within the framework
of open quantum systems. Both the long-range nature of
the hopping and the opening can strongly affect the in-
terplay of disorder and transport. Thus, the possibility to
have a transition to localization in such systems is highly
non-trivial. Specifically, cooperativity can affect the re-
sponse of the system to disorder in a drastic way: while
superradiant states show robustness to disorder [9,10], in
the subradiant subspace long-range interaction is effec-
tively shielded [40,41] and signatures of localization can
emerge [6,7,40]. In this letter, we shed new light on the
problem of light localization in resonant scattering me-
dia by combining the positional disorder studied so far,
with the initial ingredient of diagonal (on-site) disorder
as considered by Anderson [12]. With the aid of large-
scale simulations of up to 50000 atoms relying on a well-
known radiative non-Hermitian Hamiltonian [42] able to
take the vectorial nature of light into account, we show
that the playground of the problem of light localization
lies in the complex eigenvalues of the radiative Hamilto-
nian. Specifically, by analyzing the generalized participa-
tion ratio (GPR) of the eigenstates, a widely used figure
of merit to study localization transitions, we show that
a drastic transition in the behaviour of the GPR occurs
at a specific imaginary energy value (decay widths) of the
eigenstates. Such transition shares many analogies with
what happens at real energy mobility edges and thus re-
veals the presence of a mobility edge along the imaginary
axis in such systems.

The model. — We model light scattering in a 3D
cold atomic cloud by considering N atoms randomly dis-
tributed inside a cube of volume V = L3, with a spa-
tial density p = N/L?. When considering the interaction
of atoms with the electromagnetic field, the full vectorial
character of light should be taken into account. We will fo-
cus on atoms driven on a s — p dipole radiation transition
which can be characterized by three degenerate levels in
the excited state (labelled as « = x, y, z), each with a tran-
sition dipole moment (TDM) equal in coupling strength
and perpendicular to the others [34]. Thus, we model
each atom as a four-level system, with a ground state

|g) and three degenerate excited states |z), |y) and |z).
Corresponding TDM matrix elements are <a|ﬁ| g) = péa,
with o = x,y,2 and the Cartesian unit vectors defined
as é,. The radiative Hamiltonian He. describing dipole-

dipole coupling in the single-excitation approximation (see
also [42]) is

Hyee = i >

n=1ae{zy,z}
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where F, ., are the atomic transition energies and I'y is
the radiative decay rate of a single atom. In eq. (1), |n, a)
represents a quantum state where the n-th atom is ex-
cited in its a-th state, while all the other atoms are in
their ground state. Interaction terms are non-Hermitian,
namely,
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In eq. (2), ko = 2n/\ = Ep/(fic) is the transition wave
number (where A is the wavelength of the atomic tran-
sition and Ejy is the average single atomic transition en-
ergy Ey = (E, ), where the average is taken over dis-
order realization). r,, is the distance between the m-
th and n-th atom and #,,, is the unit vector joining
them. Together with the vectorial model we also consider
the scalar model [43]. Even though the latter approxi-
mation neglects polarisation effects, it is appropriate in
the dilute limit, where inter-atomic distances are larger
than the optical wavelength )\, making near-field terms
decaying as 1/r3 negligible (see the Supplementary Ma-
terial Supplementarymaterial.pdf (SM)). The effective
Hamiltonian which governs the interaction of the atoms
with the electromagnetic field in the scalar approxima-
tion is characterized by complex long-range hopping terms
Vin,n decreasing as 1/r, ,, with the distance,

al To
H = Zl (En —22>

where the state |n) stands for the n-atom in the excited

state and all the other atoms are in the ground state, while
_exp(ikorm,n)
Vm’n - ko""wun’
at distance ry,,. The model in eq. (3), known as the
scalar model, has been introduced first by Foldy [44] and

it has been used in several papers to describe cold atomic

-
In)(n| — o5 Z Vinnlm)(nl, (3)

m#n

is the interaction between the atoms
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clouds in the dilute limit [45]. Note that the vectorial
model Hamiltonian has dimension 3N x 3N contrary to
the scalar case which has dimension N x N. Thus, the
scalar model allows us to investigate much larger system
sizes with better statistics. For both models we can define
the resonant mean free path | = 1/pog (in the independent
scattering approximation), where oo = 4w /kZ is the reso-
nant scattering cross-section in a simplified scalar model.
Finally, we define the resonant optical thickness, by, as the
ratio between the system size L and the mean free path [.
For the scalar model we have

L 47Tp2/3N1/3

bp=—=—— 4
0 I k% ) ( )
while for the vectorial model the resonant scattering cross-

section is g = 6m/k% and the optical thickness thus has
b(vec) _
0

to be corrected with respect to the scalar case:
(3/2)[)850&1).

Note that H contains both real and imaginary parts,
which takes into account that the excitation is not con-
served since it can leave the system by outgoing radiation.
Its complex eigenvalues £ = E — iI'/2 describe the ener-
gies and linewidths (decay rates) of the eigenmodes of the
system. We stress that even in the dilute limit pA% < 1
we can have cooperative behaviour in the large sample
limit (L > A), provided that the cooperativity param-
eter is by > 1. In this regime cooperative effects such
as single-excitation sub- and superradiance become rele-
vant [37,45,46].

In addition to the positional disorder of the atoms as
studied previously [33,34], we now introduce an additional
random diagonal disorder term in the Hamiltonian, which
shifts the excitation energy of the atoms around its aver-
age value Fy. Such diagonal disorder terms have not been
given sufficient consideration in the context of localiza-
tion of light, as engineering such effects is difficult in typ-
ical condensed-matter samples. However, in cold atomic
clouds, such on-site disorder can be realized by applying
a speckle field coupling the excited state to an auxiliary
excited state with convenient detuning, inducing thus ran-
dom light shifts of the atomic resonances without inducing
dipole forces in the ground state. Following the approach
of the Anderson model on a lattice, we allow the site en-
ergies to fluctuate with uniform probability around the
natural excitation energy in the range of [-W/2,4+W/2],
where W is the strength of disorder. We recall that, in
addition to this diagonal disorder, we also include posi-
tional disorder which has been implemented by choosing
the position of the atoms randomly with uniform proba-
bility inside a cube of side L. Ensemble averaging thus
includes different realizations of the random position of
the atoms and of site disorder. Within this model, we
study both the eigenvalues as has been done in [33,34] as
well as the eigenstates [47].

Localized subradiant states. — A striking illustra-
tion of the existence of localized states is given in fig. 1,
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Fig. 1: Localized subradiant eigenstates. A typical local-
ized subradiant state for the scalar model and for I' =
0.094T'g, E = 0.1I'g and a participation ratio PRs ~ 7 for the
case W/(Tobo) = 0.4 and N = 6400, pA® = 5 so that by ~ 17.3.
Upper panel: three-dimensional representation of a localized
eigenstate. The radius representing each atom is proportional
to its excitation probability |¥,(r)|?, also coded in color (see
SM). Lower panel: a localized eigenstate projected on the z-y
plane.
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Fig. 2: Participation ratio in the complex plane: the participa-
tion ratio PR = PR4—> of the eigenstates for the scalar model
is shown in the complex plane (Fj,I') of the complex eigen-
values for N = 283, pA® = 5, by =~ 26.06 and W/ (boTo) = 0.3.
The critical width for the transition to localization (eq. (7))
is indicated by the red horizontal line. Note that Ej is the
difference between the real part of the eigenvalues and Ej.

where we represent a typical localized subradiant eigen-
state for the scalar model. The upper panel of fig. 1
shows a 3D representation of a typical localized eigen-
state, while the lower panel of fig. 1 shows the projection
of the squared wave function [ (r)|?> on the x-y plane.
While for zero diagonal disorder the vast majority of the
states, which can be both superradiant or subradiant, are
fully delocalized (see SM) for the spatial density consid-
ered, adding sufficient diagonal disorder leads to localiza-
tion of the longer-lived subradiant states. We observe that
the localized peak, shown in the lower panel of fig. 1, comes
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Fig. 3: Mobility edge in the imaginary axis. Typical GPR for ¢ = 2 (panel (a), (b), (c)) and ¢ = 5,10 (panel (d)) as a function
of the decay width of the eigenstates are shown both for the vectorial ((a), (c)) and scalar model ((b), (d)) for different number
N of atoms and constant density, see legend. The vertical black dashed line indicates the critical width (eq. (7)). In the insets
the root mean square of In(PR,) is shown as a function of the decay width of the eigenstates. In panels (a), (b), (d), for
each N the eigenvalues in the region —bo/4 < (E — Ey)/To < bo/4 were considered, while in panel (c) those in the region

—7—bo/4 < (E — Ep)/To < T+ bo/4 were considered.

hand in hand with an extended tail, thus exhibiting a hy-
brid character, in agreement with refs. [6,7,40]. We note
that the presence of such extended tails might strongly af-
fect transport properties [48], for instance suppressing the
exponential decay of transmission with the system size.
Here we focus on the structure of the eigenmodes, leav-
ing the analysis of the transport properties of subradiant
localized states for a future work.

Mobility edge in the imaginary axis. — In open
systems, standard approaches to study localization such as
the Thouless parameter should be applied with care [49].
We therefore analyze the properties of the generalized par-
ticipation ratio (GPR) of the eigenfunction v of the sys-
tem [50,51],

q
PR, =[S I0E| /S lawr.

For localized eigenfunctions PR, is independent of the
system size for all ¢, while in the delocalized regime PR, o
N9=1. On the other hand, at the localization transition
the GPR diverges with N as

PR, NPala=1)/d (6)

where d is the embedding dimension and D, de-
fines the fractal dimension. Moreover, the distribution

P(PR,/PRY?), where PRIY? = exp (In(PR,)), is invari-
ant at criticality in the large system size limit. This im-
plies that the variance of the distribution P(In(PRy)) is
independent of the size at criticality [52-59], allowing for
a precise identification of the critical point.

In order to have a general view of the localization prop-
erties of the eigenmodes of our system, we computed the
GPR of all the eigenmodes for a specific disorder strength,
and we plotted them as a function of their complex eigen-
values (real and imaginary parts). A typical example of
this analysis can be seen in fig. 2, which shows a strong
dependence of the PRy of the eigenmodes on the imag-
inary part of their eigenvalues, while the dependence on
the real part is weak. Specifically we observe that the
smaller their imaginary part is, the more the eigenmodes
are localized. Note that the results of fig. 2 refer to the
scalar model, and a similar figure for the vectorial model
can be found in the SM. These results are consistent with
previous findings about the interplay of super- and subra-
diance with disorder [6,7,9,10]: subradiant states are the
ones which are most affected by disorder. The most inter-
esting feature of this non-uniform response of the eigen-
modes to disorder can be seen if one analyzes the typical
value of PR, (PR!Y?) as a function of the decay widths.
Since the optical thickness by sets a relevant energy scale
of the system (i.e., the spectral energy broadening prior to
adding the diagonal disorder) [34], we considered different
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systems at a constant density and for a fixed value of the
ratio W/(boI'g). The results are shown in fig. 3, both for
the vectorial and the scalar model, for different system
sizes at constant density. The results clearly indicate the
presence of a transition in the behaviour of the GPR: while
the typical PR, of the eigenmodes is independent of the
system size below I, if W /by is kept fixed (see vertical
dashed line), it increases with the system size above T';.
These are precisely the same features present when analyz-
ing the GPR of the 3D Anderson model (or other models
displaying a localization transition) in correspondence of a
mobility edge in the real energy. Thus, our results points
to the existence of a “mobility edge” in the imaginary axis.
We checked that the imaginary mobility edge is indepen-
dent of E around the band center, as shown in fig. 2 and
further discussed in the SM.

We note that in the large density limit the results shown
in fig. 3(c) are extremely interesting, since they indicate
that in the presence of diagonal disorder, a localization
transition can exist even in the large density limit for the
vectorial case in the absence of any magnetic field. This
is at variance with what has been stated in [33] where no
diagonal disorder was considered. Moreover, the mobility
edge in the imaginary axis, even in the large density limit,
is well captured by eq. (7).

In order to identify the critical decay width corre-
sponding to the imaginary mobility edge, we performed
a systematic analysis of the variance of the GPR wvs. the
disorder strength W/T'y for different densities, system sizes
and ranges of decay widths. The variance of In(PR,) has
been used in the literature to pinpoint the localization
transition and it has been shown that, at the localization
transition, the variance of In(PR,) is independent of the
system size due to a universal distribution of the GPR [54].
Similarly to ref. [59], we use the crossing of rms(ln PR,)
close to its maximal value to locate the localization tran-
sition, see insets in fig. 3. This allowed us to identify a
critical decay width T',,..

We studied the critical decay widths as a function of
disorder for different densities. The results are shown in
fig. 4(a). By fitting the numerical results we obtained an
expression for the critical decay width:

T w
~ 0.021 + 0.54———.
Iy * bol'g

(7)

We note that the above expression cannot be extrapolated
at small values of disorder since in that case the landscape
of the GPR can only be understood analysing the whole
complex plane (see SM).

We have also analyzed the GPR for different ¢ values:
g = 0.1,0.6,2,5,10 (see SM). For ¢ > 2 we always find
a clear signature of a localization transition at a critical
decay width, while for small values of g a localization tran-
sition is not observed. This reflects the hybrid nature of
the localized eigenstates: indeed together with a localized
peak, an extended tail is present. The GPR for large val-
ues of ¢ is more sensitive to large values of [¢|?, thus it

L B

p=1 SCALAR o
p=2 SCALAR 1
p=5 SCALAR N
p=5 VECTORIAL
p=10 SCALAR ]
p=40 VECTORIAL |

L S B ——
a)0.9*

(=)
~
T
OO+ >X0|

N —
|

Fig. 4: Panel (a): critical decay width. The critical decay
width for the localization transition is shown as a function
of the normalized disorder strength for different densities and
for both the vectorial and the scalar model (see legend). The
precision with which we determined the critical decay width
is always below £0.015. Panel (b): fractal dimension. The
fractal dimension as a function of the normalized decay width
is shown for the case pA®* = 5, W/(boI'o) = 0.5. The fractal
dimension has been extracted from the size dependence of the
GPR for different values of q. The vertical black dashed line
indicates the critical width (eq. (7)).

describes the behaviour of the localized peak, whereas the
GPR for small values of ¢ is sensitive to small values of the
wave function amplitudes and thus to the wave function
tails. Since the tails are always extended (delocalized), no
localization transition is seen for small g (see SM). In order
to further confirm the above picture, we have computed
the fractal dimension D, as a function of the decay widths.
The results are shown in fig. 4(b). As one can see for ¢ > 2
a transition in the fractal dimension is seen from zero to
a value larger than one, while for ¢ < 1 no transition is
observed, confirming the hybrid nature of the eigenmodes
of the system. Note that in the extended phase, even for
q = 2,5, D, is different from d = 3 indicating that the
wave functions are never fully extended. In other words,
the eigenfunctions are always multifractal both below and
above criticality: I'c; marks the transition from a frozen
phase (where the the GPR is independent of N for suf-
ficiently large ¢), to a weakly multifractal phase (with a
narrow distribution of fractal dimensions D) [60].
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Conclusions. — We considered a well-known radiative
non-Hermitian Hamiltonian model to describe coherent
multiple scattering of light in cold atomic clouds at low
excitation level. Our results give new insights into the
problem of localization in open quantum systems under
the interplay of non-hermiticity and disorder. A novel
kind of localization transition has been identified, occur-
ring at a critical lifetime (or inverse decay rate I') of the
eigenmodes of the system, i.e., along the imaginary energy
axis. A single-parameter scaling was found for the criti-
cal decay rate I'¢,. /Ty (eq. (7)) for the localization transi-
tion, which is given by W/(boI'g), in contradiction to what
could be expected from p or by separately. The localization
transition identified here in a realistic model of light mat-
ter interaction shares many analogies with the Anderson
transition in 3D lattices and with localization transitions
in long-range interacting systems, such as in the power-
banded random matrix model [54,60], but also important
differences: the localization transition is signalled by the
behaviour of the GPR for large ¢ values (larger than or
equal to 2) and not for small ¢ values (less than 2). We
attribute this feature to the fact that the eigenmodes are
not fully localized but that they have a hybrid charac-
ter, with a localized peak and an extended tail. A precise
characterization of the shape of these eigenmodes will be
the topic of a future work. Despite these differences, our
results indicate the existence of a novel kind of localiza-
tion transition occurring along the imaginary energy axis
which is independent of the real energy (around the band
center) for sufficiently large values of diagonal disorder
and optical thickness. The existence of a mobility edge
in the imaginary axis found in this letter certainly con-
stitutes a novel feature in the field of localization in open
quantum systems. Further research will be necessary to
assess the impact of our results. For instance the general
conditions for this mobility edge in the imaginary axis
to arise in open quantum systems should be investigated
both in the single excitation and many excitation regime,
as well as for different topology and dimensions. In ad-
dition the corresponding critical exponents remain to be
determined. It would also be interesting to explore the
sensitivity of the mobility edge along the imaginary axis
to the boundary conditions and its relation to the non-
Hermitian skin effect [61]. Our findings are relevant not
only from a fundamental point of view but also for appli-
cations, e.g., to achieve efficient energy storage, quantum
memory, quantum simulation and sensing devices.
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I. EXTENDED SUBRADIANT STATE

Here we show an example of a typical extended sub-
radiant state for the scalar model in absence of diago-
nal disorder [W/(boI'g) = 0], see Fig. S1. This figure
should be compared with Fig. 1 of the main text where
a typical localized subradiant state with W/(boI'g) = 0.4
is shown. Comparing the two figures one can see that
disorder in the transition frequencies of the atoms can
induce localized states in the subradiant subspace. Both
in Fig. S1 of this supplementary material and Fig. 1
of the main text, in the upper panels each atom is
shown by a small sphere. The probability |¥;(r)[* for
the eigenstate to be on that atom is given by the color
and the radius R of the sphere according to the relation
R(T) = 15(|\IJJ(T)|2/|\IJ](T’) ?nax)2/7a where |lIlj(T) ?naz is
the maximal probability for the case W/(boI'g) = 0.4.
This normalization relation was chosen to improve vis-
ibility. In the lower panels the projection on the z — y
plane of |, (r)|? on a grid of 60 x 60 is shown. To improve
the quality of the representation, each grid point has been
averaged by the surrounding points, with a weighting in-
versely proportional to their distances squared.

II. MOBILITY EDGE IN THE IMAGINARY
AXIS: SCALAR MODEL

In order to analyze the localization transition we con-
sider the typical value of the Generalized Participation
Ratio (GPR) of the eigenmodes of the system, see Eq. (5)
in the main text. We note that the eigenfunctions of the
non-Hermitian Hamiltonian represent the projection of
the total eigenfunctions on the single excitation manifold
of the atomic degrees of freedom. Thus the quantity ||?
which is used to compute the PR, represents the condi-
tional probability to find the system on atom k, given
that one quantum of excitation is stored in the system.
The state |k) is the state where the atom k is excited
while all the other atoms are in the ground state.

In order to have a general view of the localization prop-
erties of the eigenmodes of our system, we computed the
GPR of all the eigenmodes for a specific value of the dis-
order, and we plotted them as a function of their complex
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FIG. S1. (Color online) Representations of a typical extended
subradiant state (for the scalar model) similar to Fig. 1 in the
main text. Upper panel: Three-dimensional representation of
an eigenstate. The radius representing each atom is propor-
tional to its excitation probability |¥;(r)|?. Lower panel: An
eigenstate projected on the z—y plane. Here N = 6400, pA3 =
5 so that bp ~ 17.3 and W/(boI'g) = 0. For the state shown
in both panels we have E/I'y = —0.0758,I'/T'g = 0.05. The
participation ratio PR2, defined in Eq. (5) of the main text,
of the state shown in this figure is PRe = 1941.

eigenvalues (real and imaginary part). A typical example
of this analysis can be seen in Fig. S2(a), which shows a
strong dependence of the PRy of the eigenmodes on the
imaginary part of their eigenvalues, while the dependence
on the real part is weak. Specifically we observe that the
smaller is their imaginary part, the more the eigenmodes



10 T
7000
16F
a) 4 6000 c) 10 %’
5000 w© 10" ?SEMI?
o E’
4000 E
o Q8-
3000
< 2000 10*F
1000 0E .1
10 -
10?
0
4 P N=15° 3
b) 10 g d) e i
[ = [ HN=242 ]
3 N L +—+ N=32 i
10°¢ E
£ ] E 100
N r 1 N
Il L ]
s, 5 c
o 10°F N ]
o E =—= N=20°| 3 ~=
r —e No24®| ] 2]
r — N=32°| ] E
101? N=36° E LSS
L ]
10°

FIG. S2. (Color online) Mobility edge in the imaginary axis. (a) Participation ratio PR = PRy;—2 of the eigenstates in the
complex plane (E,T) of the eigenvalues of each state for N = 28, pA* = 5, by = 26.06 and W/(boT'o) = 0.5. Note that FEj is
the difference between the real part of the eigenvalues and Ey. The critical width for the transition to localization [Eq. (7) in
the main text] is indicated by the red horizontal line. (b,c) Typical GPR for ¢ = 2 (panel b) and ¢ = 5 (panel c) as a function
of the decay width of the eigenstates for W/ (boI'g) = 0.5, pA® = 5. The vertical black dashed line indicates the critical width
[Eq. (7) in the main text]. In the insets the PR,/NPa(@=1/d where D, is the fractal dimension computed at criticality, is
shown in the region around the localized-delocalized transition. (d) Participation ratio fluctuations. The root mean square of
In(PR>) is shown as a function of the decay width of the eigenstates. The inset shows an enlargement of the same panel around
the transition. All panels refer to the case W/(boTo) = 0.5, pA*> = 5 and different number N of atoms, see legend. In panels

(b,c,d), for each N the eigenvalues in the region —bg/8 < (E — Ep)/T'o < bg/8 were considered.

are localized. We also analyzed the typical value of PR,
(PRIYP) as a function of the decay widths for different
systems at a constant density and for a fixed value of the
ratio W/(bolg). The results are shown in Fig. S2(b,c):
they clearly indicate a localization transition. While the
typical PR, of the eigenmodes is independent of the sys-
tem size below T, if W/(boT'o) is kept fixed (see vertical
dashed line), it increases with the system size above ;.
In order to identify the critical decay width correspond-
ing to the imaginary mobility edge, we performed a sys-
tematic analysis of the variance of the GPR ws. the dis-
order strength W/ for different densities, system sizes
and ranges of decay widths. The variance of In(PR,) can
be used, see main text, to pinpoint the localization transi-
tion: we use the crossing of rms(ln PR,) close to its max-
imal value to locate the localization transition, see insets
in Fig. S2(d). This allowed us to identify a critical decay
width T',, see details in the main text. Using Eq. (5) in
the main text and performing a scaling analysis we can
determine the fractal dimension as a function of the decay
widths for different ¢ values: D, = qiil In(PR,)/In(N).

The rescaled typical GPR PRq/NDq(qfl)/‘g, where Dy is
the fractal dimension computed at criticality, is shown in
the insets of Fig. S2(b,c). As one can see the re-scaled
PR, nicely cross at the critical decay width.

In Fig. S3 the typical value of PR, is shown for dif-
ferent values of ¢ for the case pA® = 5, W/(boI'g) = 0.3.
As one can see a clear signature of a localized-delocalized
transition is shown for large values of ¢ = 2,5 (lower two
panels), while for small values of ¢ = 0.1,0.6, PR, in-
creases with the system size for all decays widths. As
discussed in the main text, in the open quantum system
considered here, localized eigenmodes have a hybrid na-
ture, with a localized peak and an extended tail. Small
q values are sensitive to the tails and thus reveal the ex-
tended character of the eigenmodes, while large ¢ values
are more sensitive to the peak, thus revealing the local-
ized character of the eigenmodes. Note that even if the
PR, is never independent of the system size for small
q values, their dependence on the decay widths has a
change of slope in correspondence of the imaginary mo-
bility edge, see vertical dashed lines in the upper panels



FIG. S3. (Color online) Mobility edge in the imaginary azis.
Typical generalized participation ratio for ¢ = 0.1,0.6,2,5 as
a function of the normalized decay width of the eigenstates for
W/(boT'o) = 0.3, pA* = 5. Here the typical PR, is averaged
over the range —bo/20 < (E— Ey)/T'o < bo/20+0.2. The ver-
tical black dashed line in all panels indicates the critical width
obtained from Eq. (5) in the main text. Different numbers of
atoms are considered: N = 10%,153,20%,243 283 323,363,

FIG. S4. (Color online) Mobility edge in the imaginary azis.
Typical generalized inverse participation ratio for ¢ = 2,5, 10
as a function of the normalized decay width of the eigenstates
for W/ (boT'o) = 0.8, pA* = 5. Here the typical IPR, is aver-
aged over the range —bo/4 < (E — Ey)/To < bo/4. The verti-
cal black dashed line in all panels indicates the critical width
obtained from Eq. (7) in the main text. Different numbers of
atoms are considered: N = 10%,15%,20%,243, 283 323,363,

in Fig. S3.

The mobility edge in the imaginary axis can be also an-
alyzed considering the generalized inverse participation
ratio (GIPR) of the eigenfunction % of the system,

AL
PRy = 1= )T (51)

For localized eigenfunctions I PR, is independent of the
system size for all ¢, while in the delocalized regime
IPR, o< N'=9. In Fig. S4(a,b,c) the typical IPR is shown
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FIG. S5. (Color online) Absence of a mobility edge in the
imaginary axis in absence of disorder for the scalar case. Par-
ticipation ratio PR = PRg—2 of the eigenstates (see legend
on the right) in the complex plane (E/I'o,I'/T) of the eigen-
values of each state for N = 322, pA® ~ 5.05, by =~ 30 and
W = 0. Note that Ej is the difference between the real part
of the eigenvalues and Ej.

for ¢ = 2,5, 10, showing the mobility edge in the imagi-
nary axis with the same critical decay width as computed
in Eq. (7) in the main text, see vertical dashed line. In
Fig. S4(d) the root mean square of In(IPRy) is shown for
different ¢ values. As one can see our estimation for the
critical decay width (see vertical dashed line) indicates
fairly well the crossing of rms(In(/PR,)) for different N
even if a slight difference between the crossing for ¢ = 2
and ¢ = 5,10 is visible. A detailed investigation of this
effect is beyond the scope of this manuscript and it will
be investigated in future work. Note that the root mean
square of In(/PR,) and In(PR,) are the same since the
inverse participation ratio and the participation ratio are
just the inverse of each other.

Finally, it is important to note that our estimation
of the critical decay width as a function of the disorder
strength [Eq. (7) in the main text] cannot be extrapo-
lated to small values of disorder. Indeed for very small
disorder the mobility edge in the imaginary axis is not
defined, see Fig. S5. In general the playground for the lo-
calization of open quantum systems is the complex plane,
see Fig. S5, where the typical PRy—» for the case of zero
disorder is shown in the complex plane. As one can see
comparing this figure with Fig. 2 of the main text and
with Fig. S2(a), for zero diagonal disorder no clear mo-
bility edge in the imaginary axis is present. On the other
side, one cannot exclude the presence of other mobility
edges along different boundaries in the complex plane
(this topic is outside the focus of the current manuscript
and it will be investigated in a future work).



III. MOBILITY EDGE IN THE IMAGINARY

AXIS: VECTORIAL MODEL

When considering the interaction of atoms with the
electromagnetic field, the scalar model, see Eq. (3) in the
main text, is valid for dilute systems. In general the full
vectorial character of light should be taken into account.

Here we describe in detail the radiative hamiltonian
Hvee describing light-matter interaction in atomic-like
systems for weak fluence (single excitation approxima-
tion), see also [1]. We will focus on atoms driven on
a s — p dipole radiation transition which can be char-
acterized by three degenerate levels in the excited state
(labelled as a = x,y, 2), each with a transition dipole
moment (TDM) equal in coupling strength and perpen-
dicular to the others [2].

Thus we model each atom as a four-level system, with
a ground state |g) and three degenerate excited states

|z), |y) and |z). Corresponding TDM matrix elements
are (« ﬁ g) = léq, with @ = z,y, z and the Cartesian

unit vectors defined as é,.
To model cold atomic clouds, here we consider an en-
semble of atoms randomly placed in a 3D box (positional

J

3, 1 i !
V — 762k07"m,n - B
m,n,a,3 9 [(korm,n + k(2)7’72n,n kS’T’fn,n

In Eq. (S3), ko = Ey/(hc) is the transition wavenumber
(with Ey being the mean atomic transition energy Ey =
(En,a))s Tm,n is the distance between the mth and nth
atom and 7, ,, is the unit vector joining them. Note that
this Hamiltonian has dimension 3NV x 3NN contrary to the
scalar case which had dimension N x N.

Using Eq. (S2) we have analyzed an ensemble of atoms
in a 3D box occupying random positions. Diagonal dis-
order has been also considered allowing the energies E,
to fluctuate in the range of [IW/2, +W/2], where W is the
strength of disorder. The typical values of the general-
ized participation ratio has been computed by computing
the probability of the excitation to be on every atom.

Fig. S6 shows the results for the vectorial case pA3 =
5, W/(boI'g) = 0.8. As one can see, clear signatures of the
mobility edge in the imaginary axis are shown for the typ-
ical value of PRy=2 5 and for rms(In PR,—5 5). Note that
our estimation of the critical decay width corresponding
to the imaginary mobility edge given in Eq. (7) in the
main text is in very good agreement with the numerical
data, see vertical dashed lines in Fig. S6.

Now we turn our attention to the large density case,
where the full vectorial model is particularly relevant
since the scalar model is a good approximation only in

)

4

disorder). Note that for the vectorial model the optical
thickness has to be modified with respect to the scalar
case, and we have: bévec) = (3/2)béscal), where the opti-
cal thickness for the scalar case is given in Eq. (4) of the
main text. The Hamiltonian which takes the vectorial
nature of light into account, describing an ensemble of
atoms interacting with light can be written as [2]:

Hyee = i >

n=lae{z,y,z}

T N
3 Y Y Venaslma)mpl . (S2)

m,n=1qa,8€{z,y,2}
(metn)

r
(B =i ) Ine) (.

where E, . are the atomic transition energies and I'y is
the radiative decay rate of a single atom. In Eq. (S2),
|n, @) represents a quantum state where the nth atom is
excited in its ath state, while all the other atoms are in
their ground state. Interaction terms are non-Hermitian,
namely

3 3
2,2 1.3,.3
kOrm,n kOrm,n

1
- (kOTm,n + > <éo‘ ',ﬁmfﬂ)(é,@ . 'Fm,n)

(S3)

(

the dilute limit (small densities). It has been claimed
that, in absence of a magnetic field, localization is not
possible in the vectorial model of light [3]. Nevertheless,
here we show that, even in the large density limit, the in-
troduction of diagonal disorder induces a mobility edge
in the imaginary axis which is well captured by Eq. (7)
in the main text, see Figs. S7,S8.

On the other hand, in absence of disorder and for large
densities, the localized features of the eigenmodes of the
system are more complicated to capture. Again the real
playground is the complex plane, see Fig. S9. The possi-
bility to find localized states even in absence of diagonal
disorder, and in presence of positional disorder only, will
be investigated elsewhere.

IV. ON THE NATURE OF THE MOBILITY
EDGE IN THE IMAGINARY AXIS.

Usually in open Anderson models [4], the excitation
can escape the system only from the boundaries, so that
the decay widths are proportional to the probability of a
state to be on the boundaries. As a consequence of this,
most of the localized states also have very long lifetimes



rms(Ln(PRq))

FIG. S6. (Color online) Mobility edge in the imaginary azis
for the vectorial case. Panel (a): The root mean square of
In PR, for ¢ = 2,5 is shown as a function of the decay width
of the eigenstates for W/(boI'o) = 0.8, pA® = 5. Panel b,c):
Generalized Participation ratio for ¢ = 2 (panel b) and ¢ =5
(panel ¢) as a function of the decay width of the eigenstates for
W/(boTo) = 0.8, pA*> = 5. Here the typical PR, is averaged
over the range —bo/4 < (E — Fy)/To < bo/4. The vertical
black dashed line in all panels indicates the critical width
obtained from Eq. (7) in the main text. Data in all panels
refer to the vectorial model, see Eq. (S2).
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FIG. S7. (Color online) Mobility edge in the imaginary azis
for the vectorial case. Participation ratio PR = PRy of the
eigenstates (see legend on the right) in the complex plane
(E/To,T/To) of the eigenvalues of each state for N = 25%
pA* = 40, and W/(boTo) = 0.5. The horizontal red line indi-
cated the critical decay width, see Eq. (7) in the main text.
Note that Ej is the difference between the real part of the
eigenvalues and Fjo.

(similar to subradiant states), since their probability to
be on the boundaries is exponentially small. On the other
side, the model studied here, see also Ref. [5], strongly
differs from the previously studied models of localization
in open systems, since in our case the excitation can es-
cape from any site and not only from the boundaries. For
instance in our model a fully localized state on one site
has a decay width equal to I'g, independent of the system

10°F

-2))

rms(Ln(PF(q

S,

0 E
5 10°F

%b)

)

9=

o—o n-10°

= Nat1s®
+— N=20°

A N=25®

rms(Ln(PR

of il ) L]
1%.01 01 1 0.1 1

FK/FO K0

FIG. S8. (Color online) Mobility edge in the imaginary azis
for the vectorial case. Panel (a,b): Typical generalized partic-
ipation ratio for ¢ = 2 (panel a) and ¢ = 5 (panel b) as a func-
tion of the decay width of the eigenstates. Panel (c,d): The
root mean square of In PR, for ¢ = 2,5 is shown as a function
of the decay width of the eigenstates. Here the typical PRy is
averaged over the range —7—bg/4 < (E— Ep)/To < 7+ bo /4.
All data refer to the case W/(boTo) = 0.5, pA* = 40. The
vertical black dashed line in all panels indicates the critical
width obtained from Eq. (7) in the main text. Data in all
panels refer to the vectorial model, see Eq. (S2).
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FIG. S9. (Color online) Absence of a mobility edge in the
tmaginary axis in absence of disorder for the vectorial case.
Participation ratio PR = PRgy—2 of the eigenstates (see leg-
end on the right) in the complex plane E/To,I'/To of the
eigenvalues of each state for N = 253 pA\3 = 40, and W = 0.
Note that Ej is the difference between the real part of the
eigenvalues and Ejy.

size.

In order to clarify the difference between our model and
previously studied open 3D Anderson models, let us con-
sider a 3D cubic Anderson model with leads connected
to one of its side as in Ref. [4]. Let us assume that the
disorder is such to create a mobility edge at energy E..
Clearly the decay width of the states will be very small
for £ < E., while they will be large for energy E > E.,
and correspondingly a mobility edge could also be found



in the imaginary axis if one plots the participation ratio
PR vs the decay widths. But in this case to use E or '
is just a different way to label the states. On the other
side our mobility edge has a completely different nature
since it is independent of the real energy of the states
in a wide energy range around the energy center, and it
only depends on their imaginary energy, i.e. the lifetime
of the eigenmodes of the open system.

We note that the dependence of the PR, on the
lifetime of the subradiant eigenmodes is a novel fea-
ture, which has not been captured by the toy model of
Refs. [6, 7]. Indeed, in the open 1D and 3D Anderson
model analyzed in Refs. [6, 7], the sub- and superradi-
ant modes were segregated in two regions, whereas in
the present case, no gap between sub- and superradiant
modes exists.

We also note that in the closed Anderson 3D model,
the PRy diverges at a finite energy corresponding to the
mobility edge. In our case, the PRy diverges at a fi-
nite decay width (corresponding to the imaginary part
of the complex eigenvalues of the system), thus we use
the term mobility edge in the imaginary axis in analogy
with the localization transition in closed systems which
occurs along the real axis. In the case of a closed system,
such as the standard Anderson model, the behavior of
the PRy reflects the transport properties of a system in
a direct way: when the PRy increases with the system
size, transmission will be diffusive or ballistic, while if
the PRs is independent of the system size, transmission
is exponentially suppressed with the system size due to
localization. In the case of open systems, described by
a non-Hermitian Hamiltonian, the PR, has a more in-
direct link to transport properties since the eigenmodes
are not fully localized but they have an hybrid nature as
discussed in the main text. A discussion of the transport
properties of hybrid states can be found in Ref. [9]. We
do not aim to discuss this further in this manuscript, we
just note that 1/(E — H) is the propagator for the ex-
citation in the system. For this reason, a change in the
structure of the eigenmodes of H as signaled by the PR,
represents a real physical change in the way excitations
propagate through the system.

For the model considered here, the increase of the PRy
with T' might be explained by the increase of the mean
level spacing of the eigenvalues with I', see Fig. S10. Note
that in Fig. S10 we compute the mean level spacing in the
complex plane of the complex eigenvalues of the system.
Indeed perturbation theory in the case of non-Hermitian
Hamiltonian shows that it is the distance in the com-
plex plane which determines the strength of perturba-
tions [8, 10]. Moreover we checked that also the mean
level spacing in the real axis increases with the decay
width. The increase of the mean level spacing with the
decay width is due to the fact that superradiant states
have a stronger coupling to the photon field, so that their

energy spreads much more than subradiant states, which
are partially shielded from the interaction [11]. Thus for
a fixed amount of disorder, the states with lower I" are
more easily mixed by disorder than the states with a
larger I'. Nevertheless this argument cannot explain the
emergence of a mobility edge in the imaginary axis. More
work is needed to deepen the understanding of this novel
feature and to understand the general requirements for
the mobility edge in the imaginary axis to emerge.

We also note that a highy non-uniform mean level spac-
ing is typical for systems with long-range interactions.
For instance even a finite energy gap can be induced in
such systems [10, 11]. Localization even in presence of
long-range interactions has been discussed for subradi-
ant states in [6, 7] and in general, in the framework of a
shielding effect in [11, 12] and more recently in [13].

Finally we would like to point out that often in lit-
erature, localization properties are studied by means of
the Thouless parameter [3, 14]. The Thouless parameter
requires only the eigevalues of the system, nevertheless
it should be used with care in open systems. Indeed, in
presence of absorption or other sources of leakage, the
decay width of the states should be properly redefined
in order to take into account only the leakage from the
boundaries, see discussion in Ref. [15]. Thus, analyzing
the structure of the eigenmodes, as we did here, is a much
reliable mean to study localization in open quantum sys-
tems.
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FIG. S10. (Color online) Increase of the mean level spacing
with the widths. The mean level spacing in the complex plane
D is plotted vs the decay widths I" (red circle) for the case N =
3200, pA®> = 5 and W = 0. The mean level spacing has been
computed by counting the number of complex eigenvalues per
unit area in the complex plane for —0.1 < (E— Ep)/T'g < 0.25
and different ranges of I'. The mean level spacing D has been
obtained by taking the square root of the inverse density of
complex eigenvalues. Note that an increase of the mean level
spacing is observed even if one computes the distance in the
real energy axis of the complex eigenvalues.
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