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The disorder-induced quantum phase transition between superfluid and non-superfluid states of
bosonic particles in one dimension is generally expected to be of the Berezinskii-Kosterlitz-Thouless
(BKT) type. Here, we show that hard-core lattice bosons with integrable power-law hopping decay-
ing with distance as 1/rα – corresponding in spin language to aXY model with power-law couplings –
undergo a non-BKT continuous phase transition instead. We use exact quantum Monte-Carlo meth-
ods to determine the phase diagram for different values of the exponent α, focusing on the regime
α > 2. We find that the scaling of the superfluid stiffness with the system size is scale-invariant at
the transition point for any α ≤ 3 – a behavior incompatible with the BKT scenario and typical
of continuous phase transitions in higher dimension. By scaling analysis near the transition point,
we find that our data are consistent with a correlation length exponent satisfying the Harris bound
ν ≥ 2 and demonstrate a new universal behavior of disordered bosons in one dimension. For α > 3
our data are consistent with a BKT scenario where the liquid is pinned by infinitesimal disorder.

Bosonic particles with local interactions in one dimen-
sion (1D) are described by a universal harmonic theory,
known as Luttinger liquid (LL). The latter corresponds
to quantized superfluid hydrodynamics (including instan-
tons) and is fully characterized by the superfluid velocity,
v =

√
Ys/κ, and LL parameter, K = π

√
κYs, with κ the

compressibility and Ys the superfluid stiffness. Diago-
nal disorder induces an instability in LL towards a non-
superfluid Bose glass (BG) phase – a compressible in-
sulator displaying exponential decay of off-diagonal cor-
relations. In their seminal paper [1], Giamarchi and
Schulz found by means of a perturbative renormaliza-
tion group (RG) analysis that the LL-BG transition is
of the Berezinskii-Kosterlitz-Thouless (BKT) type that
takes place at the universal value K = Kc = 3/2
(this result holds at the two-loop level beyond the weak-
disorder limit [2]). In the strong-disorder limit, real-space
RG treatments [3, 4] and the “scratched-XY” critical-
ity [5] also predict a BKT-type transition but at a non-
universal value of Kc > 3/2. These considerations ex-
haust known scenarios for the disorder-induced superfluid
to non-superfluid phase transitions in 1D.

In this work, we consider the disorder-induced localiza-
tion transition in 1D superfluids of bosons with power-
law hopping decaying with distance as 1/rα. We uti-
lize numerically exact large scale Quantum Monte-Carlo
simulations based on the Worm Algorithm [6] to deter-
mine the ground-state superfluid phases and phase tran-
sitions for different values of α > 2. We find that the
superfluid phases can be accurately characterized by an
effective LL parameter K that captures the decay of cor-
relation functions. However, contrary to existing theo-
ries, we find that the disorder-induced quantum phase
transition is generically scale-invariant and incompatible
with the BKT scenario with the effective Kc ≤ 3/2 for
all α ≤ 3. As far as critical exponents are concerned,
the data is consistent with the correlation length expo-

nent satisfying the Harris bound ν ≥ 2 for all values of
α ≤ 3. Thus, our results reveal a new universal behav-
ior of bosons with integrable power-law hopping in one
dimension. For α > 3 our results are instead consistent
with a scenario where the superfluid is pinned by an in-
finitesimal disorder in the thermodynamic limit, similar
to a BKT-like scenario for hard-core particles with short-
range coupling. Our predictions are directly relevant for
experiments with dipolar atoms and molecules, exciton
materials, and cold ions.

We consider the following 1D lattice Hamiltonian for
hard-core bosons

H = −t
∑
i<j

aα

|rij |α
[
b†i bj + H.c.

]
+

∑
i

ϵini, (ni ≤ 1).

(1)
We employ standard notations for bosonic creation and
annihilation operators on site i and restrict the maximal
occupation number, ni = b†i bi, to unity. The nearest-
neighbor hopping amplitude, t, and the lattice spacing,
a, are taken as units of energy and length, respectively.
Random on-site energies ϵi are uniformly distributed be-
tween −W and W . In spin language, Eq. (1) is equivalent
to an XY Hamiltonian with power-law exchange cou-
plings, which, in the absence of disorder, can be realized
in experiments with cold polar molecules [7], trapped ions
[8–10] and Rydberg atoms [11–16] (the latter can also be
disordered [17]).

For ideal system with W/t = 0, the spectra and low-
energy phases of Hamiltonian (1) have been investigated
by a variety of approaches. Using linear spin-wave the-
ory, Ref. [18] identified α > 3 as a regime where main
properties reproduce those observed in the α = ∞ limit
of finite-range interactions; 1 < α < 3 as an intermediate
regime with the XY phase characterized by a contin-
uously varying dynamical exponent z = (α − 1)/2 (it
governs the k → 0 limit of the dispersion relation); and
α < 1 as a long-range regime with dispersionless excita-
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tions and properties similar to the infinite-range α = 0
case in the thermodynamic limit. In this harmonic ap-
proach, α = 3 is the boundary between the intermediate
and short-range regimes. Using a bosonization approach
supplemented by an RG analysis, Ref. [19] predicts that
power-law couplings are relevant in the RG sense for
α < 3 − 1/(2K), with K > 1 to be determined numer-
ically for each given α. In the following, we study the
ground-state superfluid phases and phase transitions of
Eq. (1) for α > 2 using large scale path-integral quantum
Monte-Carlo simulations based on the Worm algorithm
[6]. Without loss of generality, we focus on the particle
density ρ = 1/2.

We start our analysis by first characterizing the
bosonic liquid in the absence of disorder (W/t = 0).
Figure 1(a) shows the dispersion relation E(k) vs k for
three values of α = 2.5, 3.0, and 3.2 where k is the
quasi-momentum. It was deduced numerically from spec-
tral peaks after analytic continuation of the imaginary-
frequency dynamic structure factor [20, 21]. The chosen
values of α correspond to values in the expected inter-
mediate (α = 2.5), boundary (α = 3.0) and short-range
(α = 3.2) limits of the spin-wave analysis, respectively.
The dispersion relation is non-linear in k for α = 2.5
(dots) and the data can be fit well by E(k) ∼ kz∗ , with
z∗ ≃ 0.74, in good agreement with the z = 0.75 pre-
diction of spin-wave analysis (continuous black line). In
the short-range regime, instead, the dispersion relation
is consistent with the linear law and a small negative
quadratic contribution. [Given restricted range of avail-
able k values, α = 3.0 (squares) and 3.2 (triangles) results
can be also fitted to the E(k) ∼ kz∗ law with exponents
z∗ ≃ 0.82 and z∗ ≃ 0.88, respectively.]

For a 1D superfluid ground state, the single-particle
density matrix G(ℓ) = ⟨ b†i bi+ℓ⟩ is expected to show a
non-integrable algebraic decay with the distance ℓ. Our
data for G are shown in Fig. 1(b), for the same values
of α as in panel (a) for a system with L = 256 sites and
inverse temperature β = L. We observe the algebraic
decay G ∼ ℓ−γ for all α. The exponent γ is then used
below to extract numerically an effective LL parameter
via the bosonization relation γ = 1/(2K).

In order to directly compare with expectations from
bosonization theory, in Fig. 1(c) we present the LL pa-
rameter as a function of α from two standard meth-
ods: the power-law decay G ∼ ℓ−γ (green dots) and
the relation K = π

√
κYs (red squares). Both κ and

Ys can be conveniently computed by quantum Monte
Carlo through mean-square particle, N , and winding
number, W, fluctuations using the Pollock–Ceperley re-
lation Ys = L⟨W2⟩/β. Figure 1(c) shows that the two
methods produce similar estimates of K for all α, within
the error bars. Moreover, K decreases monotonically and
continuously with α from a large value K ≳ 5 at α ∼ 2.3
to K ≈ 1 at α = 4. This behavior is explained by the
fact that power-law hopping in Hamiltonian (1) allows for
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FIG. 1. Characterization of the superfluid phase for W/t = 0:
(a) Dispersion relations E(k) vs k for α = 2.5, 3.0 and 3.2 cho-
sen in the intermediate and short-range regimes, respectively
(see text). (b) Single particle density matrix G(ℓ) vs distance
ℓ showing an algebraic decay for all α. (c) Numerical eval-
uation of the Luttinger liquid parameter K as a function of
α from the power-law decay G ∝ ℓ−1/(2K) (green dots) and
from the relation K = π

√
κYs (red squares).

large-scale particle exchanges for small enough α < 3,
mimicking the behavior of soft-core bosons, for which
one can easily get K ≫ 1. The K = 1 value (dashed
dotted line) corresponds to the short-range case of hard-
core bosons with the nearest neighbor hopping, a limit
that is here asymptotically approached at α > 3. These
results are overall consistent with expectations based on
the spin-wave and bosonization theories [22, 23]: despite
the unusual dispersion relations shown in panel (a) of
Fig. 1, the liquid largely behaves as a regular LL with
an effective Luttinger parameter K. In the following we
analyse the situation at finite disorder strength and, in
particular, explore the nature of the transition point.

Figure 2(a) shows the evolution of superfluid proper-
ties (measured through the winding number fluctuations
⟨W2⟩) with disorder, W/t, for two example cases α = 2.7
(empty symbols) and 3.2 (full symbols) and for several
values of L = 64, 128, 256. In both cases, ⟨W2⟩ decrease
monotonically with increasing W/t, until they reach near
zero values. This behavior signals the transition between
the superfluid and non-superfluid states. In the short-
range case α = 3.2, the behavior at larger values of
disorder is reminiscent of what is expected for a BKT
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FIG. 2. Characterization of the superfluid to non-superfluid phase transition: (a) Mean-square winding number ⟨W2⟩ vs
disorder strength W/t for α = 2.7 (empty symbols) and 3.2 (full symbols) for system sizes L = 64, 128, 256. (b)-(e) Zoom-in
on the area near phase transitions for α = 2.5, 2.7, 3.0 and 3.2, showing crossing between the curves; the curve corresponding
to the largest size is subtracted from all data for clarity. Vertical error bars indicate the estimated uncertainty from the Monte
Carlo simulations and disorder-averages. Insets: Finite-size scaling of crossings points between curves for system sizes L1 and
L2 = 2L1 as a function of L = L1.

transition when in the infinite system ⟨W2⟩ displays a
jump to zero at the critical point [22]. However, sur-
prisingly, for α = 2.7 there is a clear crossing point of
⟨W2⟩ around W/t ∼ 2. This is inconsistent with the
BKT criticality and is, instead, a signature of continuous
scale-invariant phase transitions. This fact can be used
to pinpoint the critical disorder strength Wc where su-
perfluidity is lost by the crossing point of ⟨W2⟩ -vs- W
curves for different values of L. The panels (b)-(e) in
Fig. 2 present data in the vicinity of transition points for
α = 2.5, 2.7, 3.0 and 3.2 using β = L/8 [even for α = 3.2
our temperature is a factor of two smaller than the low-
est phonon mode]. Crossing points are very pronounced
in (b) and (c) for intermediate exponents α, leaving no
doubt that we are dealing with generic continuous transi-
tions at W/t = 3.24(5) for α = 2.5 and at W/t = 2.12(5)
for α = 2.7. The crossings appear to persist when tran-
sitioning to the short-range regime α ≳ 3, see panels (d)
and (e) in Fig. 2 with crossings around W/t = 0.87(5) for
α = 3.0 and around W/t = 0.5(5) for α = 3.2, contrary to
all expectations. However a careful finite-size scaling up
to large system sizes L = 1024 shows that the transition
point for α > 3 scales to W/t → 0 in the thermodynamic
limit, see Inset in Fig. 2(e), implying the absence of a
continuous phase transition at finite W in the thermody-
namic limit. The breakdown of the BKT scenario for all
values 2 < α ≤ 3 in Eq. (1) is surprising and is the main
result of this work.

Figure 3(a) summarizes the ground state phase dia-

gram of Hamiltonian (1) in terms of Wc and α. Here, for
each α ≤ 3, the critical point Wc is determined from the
scale-invariant crossing point as described above. The
critical disorder strength Wc/t decreases monotonically
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FIG. 3. (a) Phase diagram, Wc vs α, of the superfluid and
non-superfluid quantum phases for model (1). (b) Critical val-
ues of LL parameterKc vs α, as estimated from the power-law
decay of G (green dots) and from K = π

√
κYs (red squares).
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FIG. 4. (a)-(c) Data collapse for the scaled superfluid stiffness

L−ζ/νYs vs L
1/ν [(W/t)−(Wc/t)] for α = 2.5, 2.7 and 3.0 using

L = 64, 128, 256. The fitted values of the correlation length
exponent ν and ζ are reported directly in the figure. They
satisfy ν ≳ 2 for all α.
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FIG. 5. Data collapse for the scaled superfluid stiffness
L−ζ/νYs vs L1/ν [(W/t) − (Wc/t)] for α = 3.2 using L = 64,
128, 256. The fitted values of the correlation length expo-
nent ν and ζ are reported directly in the figure. Unlike for
α < 3, this scaling corresponds here to a finite-size effect, as
the transition is not located at Wc/t = 0.57 and slowly shifts
to Wc/t = 0, see Fig. 2(e).

from a large value Wc/t ∼ 5.1 to ∼ 0.9 for α = 3. For
α > 3 the transition in the thermodynamic limit occurs
at Wc/t = 0+. The limiting value Wc/t = 0+ would
correspond to the strictly short-range limit of hard-core
bosons with short-range hopping, which are known to be
localized by an infinitesimal disorder [22].

Figure 3(b) shows the critical LL parameter Kc com-
puted at Wc/t for each value of α. Contrary to previous
theories, here we find that, for α ≲ 3, Kc remains smaller
than the critical BKT value of 3/2 for short-range hop-
ping models with weak disorder [22]. The behavior for
α ≲ 3 is thus incompatible with known results from bo-
zonisation theory.

In contrast, for α > 3 our results are in agreement
with conclusion that ideal systems with K < 3/2 are

ultimately pinned by disorder, leading to an insulating
BG phase for any finite value of W/t.

We complete our characterization of quantum phase
transition in Fig. 3(a) by determining the correlation
length exponent ν using data collapse analysis near the
critical points [24]. For each α, the results of Monte
Carlo simulations are rescaled by L−ζ/νYs and collapsed
on a single master curve using L1/ν [(W/t)− (Wc/t)] as a
variable. Critical values Wc/t are taken from the crossing
points in Fig. 2, while ν and ζ are treated as fitting
parameters and obtained using a Nelder-Mead algorithm
[25] with a cost function based on the Kawashima-Ito-
Houdayer-Hartmann quality metric [26, 27]. Example
results for α = 2.5, 2.7, 3.0 and α = 3.2 are shown in
Figs. 4 and 5, respectively. We observe good collapse
of all data near the critical points for α ≥ 2, and the
obtained correlation length exponents always satisfy the
so-called Harris bound ν ≳ 2, see [28]. In fact, this result
is expected from general arguments for a large class of d-
dimensional disordered systems where an appropriately
defined correlation length diverges [29]. Data collapse
for α > 3 using Wc/t = 0.57 is a finite-size effect given
that this value of α is close to the boundary between
the intermediate and short-range regimes and crossing
points slowly shift to zero with increasing the system size.
However, this effect will likely be observed in experiments
dealing with finite systems.

In conclusion, we have demonstrated that the disorder-
induced superfluid to non-superfluid quantum phase
transition for models with power-law hopping is a scale-
invariant transition if 2 < α ≤ 3, ruling out the ex-
pected BKT scenario for interacting one-dimensional
bosons in this regime. Our work opens up multiple
other research directions, including whether the finite-
temperature BKT scenario is generally inconsistent with
power-law hopping models also in two dimensions [23,
30, 31]. Another open question is the nature of the non-
superfluid quantum phase for general values of α. In Ref.
[32] it was conjectured that for α = 3 this phase is a non-
superfluid Bose metal phase with finite zero-frequency
optical conductivity and algebraic decay of correlations.
It is an open question whether similar behavior can be
found for other α values. Our predictions should be di-
rectly testable in experiments for XY models realized via
internal excitations of cold dipolar atoms and molecules,
cold ions chains, and Rydberg atoms.

We gratefully acknowledge discussions with Jerome
Dubail. This research has received funding from the
European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sk lodowska-Curie
project 955479 (MOQS), the Horizon Europe programme
HORIZON-CL4-2021-DIGITAL-EMERGING-01-30 via
the project 101070144 (EuRyQa) and from the French
National Research Agency under the Investments of the
Future Program projects ANR-21-ESRE-0032 (aQCess),
ANR-22-CE47-0013-02 (CLIMAQS) and ANR-23-CE30-



5

0022-02 (SIX). NP acknowledges support from the Na-
tional Science Foundation under Grant No. DMR-
2032077.

[1] T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325
(1988).

[2] Z. Ristivojevic, A. Petković, P. Le Doussal, and T. Gia-
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